home *** CD-ROM | disk | FTP | other *** search
Unknown | 1996-07-25 | 14.3 KB |
open in:
MacOS 8.1
|
Win98
|
DOS
view JSON data
|
view as text
This file was not able to be converted.
This format is not currently supported by dexvert.
Confidence | Program | Detection | Match Type | Support
|
---|
1%
| dexvert
| Eclipse Tutorial (other/eclipseTutorial)
| ext
| Unsupported |
1%
| dexvert
| JuggleKrazy Tutorial (other/juggleKrazyTutorial)
| ext
| Unsupported |
100%
| file
| data
| default
| |
100%
| gt2
| Kopftext: 'TUTOR 0658'
| default (weak)
|
|
hex view+--------+-------------------------+-------------------------+--------+--------+
|00000000| 54 55 54 4f 52 20 30 36 | 35 38 00 00 0c 01 00 00 |TUTOR 06|58......|
|00000010| 53 65 63 74 69 6f 6e 20 | 31 2e 31 20 20 47 72 61 |Section |1.1 Gra|
|00000020| 70 68 73 20 61 6e 64 20 | 47 72 61 70 68 69 6e 67 |phs and |Graphing|
|00000030| 20 55 74 69 6c 69 74 69 | 65 73 0d 0a 00 0d 0b 00 | Utiliti|es......|
|00000040| 0e 65 31 2d 31 2d 31 0e | 47 75 69 64 65 64 20 45 |.e1-1-1.|Guided E|
|00000050| 78 61 6d 70 6c 65 20 31 | 0f 20 20 56 65 72 69 66 |xample 1|. Verif|
|00000060| 79 69 6e 67 20 53 6f 6c | 75 74 69 6f 6e 20 50 6f |ying Sol|ution Po|
|00000070| 69 6e 74 73 0d 0a 00 0d | 0b 00 0e 65 31 2d 31 2d |ints....|...e1-1-|
|00000080| 32 0e 47 75 69 64 65 64 | 20 45 78 61 6d 70 6c 65 |2.Guided| Example|
|00000090| 20 32 0f 20 20 46 69 6e | 64 69 6e 67 20 49 6e 74 | 2. Fin|ding Int|
|000000a0| 65 72 63 65 70 74 73 0d | 0a 00 0d 0b 00 0e 65 31 |ercepts.|......e1|
|000000b0| 2d 31 2d 33 0e 47 75 69 | 64 65 64 20 45 78 61 6d |-1-3.Gui|ded Exam|
|000000c0| 70 6c 65 20 33 0f 20 20 | 54 65 73 74 69 6e 67 20 |ple 3. |Testing |
|000000d0| 66 6f 72 20 53 79 6d 6d | 65 74 72 79 0d 0a 00 0d |for Symm|etry....|
|000000e0| 0b 00 0e 65 31 2d 31 2d | 34 0e 47 75 69 64 65 64 |...e1-1-|4.Guided|
|000000f0| 20 45 78 61 6d 70 6c 65 | 20 34 0f 20 20 46 69 6e | Example| 4. Fin|
|00000100| 64 69 6e 67 20 74 68 65 | 20 53 74 61 6e 64 61 72 |ding the| Standar|
|00000110| 64 20 46 6f 72 6d 20 6f | 66 20 74 68 65 20 45 71 |d Form o|f the Eq|
|00000120| 75 61 74 69 6f 6e 20 6f | 66 20 61 20 43 69 72 63 |uation o|f a Circ|
|00000130| 6c 65 0d 0a 00 0d 0b 00 | 0e 65 31 2d 31 2d 35 0e |le......|.e1-1-5.|
|00000140| 47 75 69 64 65 64 20 45 | 78 61 6d 70 6c 65 20 35 |Guided E|xample 5|
|00000150| 0f 20 20 43 6f 6d 70 6c | 65 74 69 6e 67 20 74 68 |. Compl|eting th|
|00000160| 65 20 53 71 75 61 72 65 | 20 74 6f 20 53 6b 65 74 |e Square| to Sket|
|00000170| 63 68 20 61 20 43 69 72 | 63 6c 65 0d 0a 00 0d 0b |ch a Cir|cle.....|
|00000180| 00 0e 69 31 2d 31 2d 31 | 0e 49 6e 74 65 67 72 61 |..i1-1-1|.Integra|
|00000190| 74 65 64 20 45 78 61 6d | 70 6c 65 20 31 0f 20 20 |ted Exam|ple 1. |
|000001a0| 55 73 69 6e 67 20 49 6e | 74 65 72 63 65 70 74 73 |Using In|tercepts|
|000001b0| 20 61 6e 64 20 53 79 6d | 6d 65 74 72 79 20 61 73 | and Sym|metry as|
|000001c0| 20 53 6b 65 74 63 68 69 | 6e 67 20 41 69 64 73 0d | Sketchi|ng Aids.|
|000001d0| 0a 00 0d 0b 00 0e 69 31 | 2d 31 2d 32 0e 49 6e 74 |......i1|-1-2.Int|
|000001e0| 65 67 72 61 74 65 64 20 | 45 78 61 6d 70 6c 65 20 |egrated |Example |
|000001f0| 32 0f 20 20 55 73 69 6e | 67 20 49 6e 74 65 72 63 |2. Usin|g Interc|
|00000200| 65 70 74 73 20 61 6e 64 | 20 53 79 6d 6d 65 74 72 |epts and| Symmetr|
|00000210| 79 20 61 73 20 53 6b 65 | 74 63 68 69 6e 67 20 41 |y as Ske|tching A|
|00000220| 69 64 73 0d 0a 00 0d 0b | 00 0e 69 31 2d 31 2d 33 |ids.....|..i1-1-3|
|00000230| 0e 49 6e 74 65 67 72 61 | 74 65 64 20 45 78 61 6d |.Integra|ted Exam|
|00000240| 70 6c 65 20 33 0f 20 20 | 55 73 69 6e 67 20 49 6e |ple 3. |Using In|
|00000250| 74 65 72 63 65 70 74 73 | 20 61 6e 64 20 53 79 6d |tercepts| and Sym|
|00000260| 6d 65 74 72 79 20 61 73 | 20 53 6b 65 74 63 68 69 |metry as| Sketchi|
|00000270| 6e 67 20 41 69 64 73 0d | 0a 00 0d 0b 00 0e 69 31 |ng Aids.|......i1|
|00000280| 2d 31 2d 34 0e 49 6e 74 | 65 67 72 61 74 65 64 20 |-1-4.Int|egrated |
|00000290| 45 78 61 6d 70 6c 65 20 | 34 0f 20 20 55 73 69 6e |Example |4. Usin|
|000002a0| 67 20 49 6e 74 65 72 63 | 65 70 74 73 20 61 6e 64 |g Interc|epts and|
|000002b0| 20 53 79 6d 6d 65 74 72 | 79 20 61 73 20 53 6b 65 | Symmetr|y as Ske|
|000002c0| 74 63 68 69 6e 67 20 41 | 69 64 73 0d 0a 00 53 65 |tching A|ids...Se|
|000002d0| 63 74 69 6f 6e 20 31 2e | 31 20 20 47 72 61 70 68 |ction 1.|1 Graph|
|000002e0| 73 20 61 6e 64 20 47 72 | 61 70 68 69 6e 67 20 55 |s and Gr|aphing U|
|000002f0| 74 69 6c 69 74 69 65 73 | 0d 0b 00 44 65 74 65 72 |tilities|...Deter|
|00000300| 6d 69 6e 65 20 77 68 65 | 74 68 65 72 20 74 68 65 |mine whe|ther the|
|00000310| 20 70 6f 69 6e 74 73 20 | 28 31 2c 20 2d 32 29 20 | points |(1, -2) |
|00000320| 61 6e 64 20 28 30 2c 20 | 31 29 20 6c 69 65 20 6f |and (0, |1) lie o|
|00000330| 6e 20 74 68 65 20 67 72 | 61 70 68 20 6f 66 0d 0a |n the gr|aph of..|
|00000340| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|00000350| 20 20 20 20 20 20 20 20 | 11 32 32 20 20 20 20 32 | |.22 2|
|00000360| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|00000370| 20 20 20 20 20 20 20 20 | 20 11 33 78 20 20 11 31 | | .3x .1|
|00000380| 2b 20 11 33 79 20 20 11 | 31 2d 20 33 11 33 78 20 |+ .3y .|1- 3.3x |
|00000390| 11 31 2b 20 11 33 79 20 | 11 31 3d 20 30 2e 0d 0a |.1+ .3y |.1= 0...|
|000003a0| 00 0d 0b 00 13 12 31 53 | 4f 4c 55 54 49 4f 4e 12 |......1S|OLUTION.|
|000003b0| 30 0d 0a 00 0d 0b 00 54 | 6f 20 74 65 73 74 20 77 |0......T|o test w|
|000003c0| 68 65 74 68 65 72 20 74 | 68 65 20 70 6f 69 6e 74 |hether t|he point|
|000003d0| 20 28 31 2c 20 2d 32 29 | 20 6c 69 65 73 20 6f 6e | (1, -2)| lies on|
|000003e0| 20 74 68 65 20 67 72 61 | 70 68 2c 20 77 65 20 73 | the gra|ph, we s|
|000003f0| 75 62 73 74 69 74 75 74 | 65 20 74 68 65 20 76 61 |ubstitut|e the va|
|00000400| 6c 75 65 73 0d 0a 00 11 | 33 78 20 11 31 3d 20 31 |lues....|3x .1= 1|
|00000410| 20 61 6e 64 20 11 33 79 | 20 11 31 3d 20 2d 32 20 | and .3y| .1= -2 |
|00000420| 69 6e 74 6f 20 74 68 65 | 20 65 71 75 61 74 69 6f |into the| equatio|
|00000430| 6e 2e 0d 0a 00 20 20 20 | 20 20 20 20 20 20 20 20 |n.... | |
|00000440| 20 20 20 20 20 11 32 32 | 20 20 20 20 32 0d 0b 00 | .22| 2...|
|00000450| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 | | .|
|00000460| 33 78 20 20 11 31 2b 20 | 11 33 79 20 20 11 31 2d |3x .1+ |.3y .1-|
|00000470| 20 33 11 33 78 20 11 31 | 2b 20 11 33 79 20 11 31 | 3.3x .1|+ .3y .1|
|00000480| 3d 20 30 20 20 20 20 20 | 20 20 20 20 20 20 20 11 |= 0 | .|
|00000490| 32 12 31 47 69 76 65 6e | 20 65 71 75 61 74 69 6f |2.1Given| equatio|
|000004a0| 6e 12 30 11 31 13 0d 0a | 00 20 20 20 20 20 20 20 |n.0.1...|. |
|000004b0| 20 20 20 20 11 32 32 20 | 20 20 20 20 20 20 32 20 | .22 | 2 |
|000004c0| 20 20 20 20 20 20 20 20 | 20 20 20 11 31 12 31 11 | | .1.1.|
|000004d0| 32 3f 11 31 12 30 0d 0b | 00 20 20 20 20 20 20 20 |2?.1.0..|. |
|000004e0| 20 20 20 31 20 20 2b 20 | 28 2d 32 29 20 20 2d 20 | 1 + |(-2) - |
|000004f0| 33 28 31 29 20 2d 20 11 | 33 32 20 11 31 3d 20 30 |3(1) - .|32 .1= 0|
|00000500| 20 20 20 20 20 20 20 20 | 20 20 20 20 11 32 12 31 | | .2.1|
|00000510| 53 75 62 73 74 69 74 75 | 74 65 20 78 3d 31 20 61 |Substitu|te x=1 a|
|00000520| 6e 64 20 79 3d 2d 32 11 | 31 12 30 13 0d 0a 00 20 |nd y=-2.|1.0.... |
|00000530| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000540| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 12 | | .|
|00000550| 31 11 32 3f 11 31 12 30 | 0d 0b 00 20 20 20 20 20 |1.2?.1.0|... |
|00000560| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 31 20 2b | | 1 +|
|00000570| 20 34 20 2d 20 33 20 2d | 20 32 20 3d 20 30 13 0d | 4 - 3 -| 2 = 0..|
|00000580| 0a 00 0d 0b 00 20 20 20 | 20 20 20 20 20 20 20 20 |..... | |
|00000590| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000005a0| 20 20 20 30 20 3d 20 30 | 20 20 20 20 20 20 20 20 | 0 = 0| |
|000005b0| 20 20 20 20 11 32 12 31 | 53 6f 6c 75 74 69 6f 6e | .2.1|Solution|
|000005c0| 20 63 68 65 63 6b 73 12 | 30 11 31 13 0d 0a 00 0d | checks.|0.1.....|
|000005d0| 0b 00 54 68 65 72 65 66 | 6f 72 65 2c 20 77 65 20 |..Theref|ore, we |
|000005e0| 63 6f 6e 63 6c 75 64 65 | 20 74 68 61 74 20 74 68 |conclude| that th|
|000005f0| 65 20 70 6f 69 6e 74 20 | 28 31 2c 20 2d 32 29 20 |e point |(1, -2) |
|00000600| 64 6f 65 73 20 6c 69 65 | 20 6f 6e 20 74 68 65 20 |does lie| on the |
|00000610| 67 72 61 70 68 20 6f 66 | 20 74 68 65 20 0d 0a 00 |graph of| the ...|
|00000620| 67 69 76 65 6e 20 65 71 | 75 61 74 69 6f 6e 2e 13 |given eq|uation..|
|00000630| 0d 0a 00 0d 0b 00 54 6f | 20 74 65 73 74 20 77 68 |......To| test wh|
|00000640| 65 74 68 65 72 20 74 68 | 65 20 70 6f 69 6e 74 20 |ether th|e point |
|00000650| 28 30 2c 20 31 29 20 6c | 69 65 73 20 6f 6e 20 74 |(0, 1) l|ies on t|
|00000660| 68 65 20 67 72 61 70 68 | 2c 20 77 65 20 73 75 62 |he graph|, we sub|
|00000670| 73 74 69 74 75 74 65 20 | 74 68 65 20 76 61 6c 75 |stitute |the valu|
|00000680| 65 73 0d 0a 00 11 33 78 | 20 11 31 3d 20 30 20 61 |es....3x| .1= 0 a|
|00000690| 6e 64 20 11 33 79 20 11 | 31 3d 20 31 20 69 6e 74 |nd .3y .|1= 1 int|
|000006a0| 6f 20 74 68 65 20 65 71 | 75 61 74 69 6f 6e 2e 00 |o the eq|uation..|
|000006b0| 0c 0d 0a 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |.... | |
|000006c0| 20 20 20 20 11 32 32 20 | 20 20 20 32 0d 0b 00 20 | .22 | 2... |
|000006d0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 11 33 | | .3|
|000006e0| 78 20 20 11 31 2b 20 11 | 33 79 20 20 11 31 2d 20 |x .1+ .|3y .1- |
|000006f0| 33 11 33 78 20 11 31 2b | 20 11 33 79 20 11 31 3d |3.3x .1+| .3y .1=|
|00000700| 20 30 20 20 20 20 20 20 | 20 20 20 20 20 20 11 32 | 0 | .2|
|00000710| 12 31 47 69 76 65 6e 20 | 65 71 75 61 74 69 6f 6e |.1Given |equation|
|00000720| 12 30 11 31 13 0d 0a 00 | 20 20 20 20 20 20 20 20 |.0.1....| |
|00000730| 20 20 20 20 20 20 11 32 | 32 20 20 20 20 32 20 20 | .2|2 2 |
|00000740| 20 20 20 20 20 20 20 20 | 20 20 11 31 12 31 11 32 | | .1.1.2|
|00000750| 3f 11 31 12 30 0d 0b 00 | 20 20 20 20 20 20 20 20 |?.1.0...| |
|00000760| 20 20 20 20 20 30 20 20 | 2b 20 31 20 20 2d 20 33 | 0 |+ 1 - 3|
|00000770| 28 30 29 20 2b 20 31 20 | 3d 20 30 20 20 20 20 20 |(0) + 1 |= 0 |
|00000780| 20 20 20 20 20 20 20 11 | 32 12 31 53 75 62 73 74 | .|2.1Subst|
|00000790| 69 74 75 74 65 20 78 3d | 30 20 61 6e 64 20 79 3d |itute x=|0 and y=|
|000007a0| 31 11 31 12 30 13 0d 0a | 00 20 20 20 20 20 20 20 |1.1.0...|. |
|000007b0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000007c0| 20 20 20 20 20 20 20 20 | 20 12 31 11 32 3f 11 31 | | .1.2?.1|
|000007d0| 12 30 0d 0b 00 20 20 20 | 20 20 20 20 20 20 20 20 |.0... | |
|000007e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 31 | | 1|
|000007f0| 20 2b 20 31 20 3d 20 30 | 13 0d 0a 00 0d 0b 00 20 | + 1 = 0|....... |
|00000800| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000810| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 32 20 11 | | 2 .|
|00000820| 34 3d 20 11 31 30 20 20 | 20 20 20 20 20 20 20 20 |4= .10 | |
|00000830| 20 20 11 32 12 31 53 6f | 6c 75 74 69 6f 6e 20 64 | .2.1So|lution d|
|00000840| 6f 65 73 20 6e 6f 74 20 | 63 68 65 63 6b 12 30 11 |oes not |check.0.|
|00000850| 31 13 0d 0a 00 0d 0b 00 | 54 68 65 72 65 66 6f 72 |1.......|Therefor|
|00000860| 65 2c 20 77 65 20 63 6f | 6e 63 6c 75 64 65 20 74 |e, we co|nclude t|
|00000870| 68 61 74 20 74 68 65 20 | 70 6f 69 6e 74 20 28 30 |hat the |point (0|
|00000880| 2c 20 31 29 20 64 6f 65 | 73 20 6e 6f 74 20 6c 69 |, 1) doe|s not li|
|00000890| 65 20 6f 6e 20 74 68 65 | 20 67 72 61 70 68 20 6f |e on the| graph o|
|000008a0| 66 20 74 68 65 0d 0a 00 | 67 69 76 65 6e 20 65 71 |f the...|given eq|
|000008b0| 75 61 74 69 6f 6e 2e 0d | 0a 00 53 65 63 74 69 6f |uation..|..Sectio|
|000008c0| 6e 20 31 2e 31 20 20 47 | 72 61 70 68 73 20 61 6e |n 1.1 G|raphs an|
|000008d0| 64 20 47 72 61 70 68 69 | 6e 67 20 55 74 69 6c 69 |d Graphi|ng Utili|
|000008e0| 74 69 65 73 0d 0b 00 20 | 20 20 20 20 20 20 20 20 |ties... | |
|000008f0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000900| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000910| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000920| 20 20 20 11 32 32 0d 0b | 00 11 31 46 69 6e 64 20 | .22..|..1Find |
|00000930| 74 68 65 20 11 33 78 11 | 31 2d 69 6e 74 65 72 63 |the .3x.|1-interc|
|00000940| 65 70 74 73 20 61 6e 64 | 20 11 33 79 11 31 2d 69 |epts and| .3y.1-i|
|00000950| 6e 74 65 72 63 65 70 74 | 20 6f 66 20 74 68 65 20 |ntercept| of the |
|00000960| 67 72 61 70 68 20 6f 66 | 20 11 33 79 20 11 31 3d |graph of| .3y .1=|
|00000970| 20 32 11 33 78 20 20 11 | 31 2d 20 35 11 33 78 20 | 2.3x .|1- 5.3x |
|00000980| 11 31 2b 20 33 2e 0d 0a | 00 0d 0b 00 13 12 31 53 |.1+ 3...|......1S|
|00000990| 4f 4c 55 54 49 4f 4e 12 | 30 0d 0a 00 0d 0b 00 54 |OLUTION.|0......T|
|000009a0| 6f 20 66 69 6e 64 20 74 | 68 65 20 11 33 78 11 31 |o find t|he .3x.1|
|000009b0| 2d 69 6e 74 65 72 63 65 | 70 74 73 2c 20 77 65 20 |-interce|pts, we |
|000009c0| 6c 65 74 20 11 33 79 20 | 11 31 3d 20 30 20 61 6e |let .3y |.1= 0 an|
|000009d0| 64 20 73 6f 6c 76 65 20 | 66 6f 72 20 11 33 78 11 |d solve |for .3x.|
|000009e0| 31 2e 0d 0a 00 20 20 20 | 20 20 20 20 20 20 20 20 |1.... | |
|000009f0| 20 20 20 20 20 11 32 32 | 0d 0b 00 20 20 20 20 20 | .22|... |
|00000a00| 20 20 20 20 20 11 33 79 | 20 11 31 3d 20 32 11 33 | .3y| .1= 2.3|
|00000a10| 78 20 20 11 31 2d 20 35 | 11 33 78 20 11 31 2b 20 |x .1- 5|.3x .1+ |
|00000a20| 33 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |3 | |
|00000a30| 20 11 32 12 31 47 69 76 | 65 6e 20 65 71 75 61 74 | .2.1Giv|en equat|
|00000a40| 69 6f 6e 12 30 11 31 13 | 0d 0a 00 20 20 20 20 20 |ion.0.1.|... |
|00000a50| 20 20 20 20 20 20 20 20 | 20 20 20 11 32 32 0d 0b | | .22..|
|00000a60| 00 20 20 20 20 20 20 20 | 20 20 20 11 31 30 20 3d |. | .10 =|
|00000a70| 20 32 11 33 78 20 20 11 | 31 2d 20 35 11 33 78 20 | 2.3x .|1- 5.3x |
|00000a80| 11 31 2b 20 33 20 20 20 | 20 20 20 20 20 20 20 20 |.1+ 3 | |
|00000a90| 20 20 20 20 20 11 32 12 | 31 4c 65 74 20 79 3d 30 | .2.|1Let y=0|
|00000aa0| 12 30 11 31 13 0d 0a 00 | 0d 0b 00 20 20 20 20 20 |.0.1....|... |
|00000ab0| 20 20 20 20 20 30 20 3d | 20 28 32 11 33 78 20 11 | 0 =| (2.3x .|
|00000ac0| 31 2d 20 33 29 28 11 33 | 78 20 11 31 2d 20 31 29 |1- 3)(.3|x .1- 1)|
|00000ad0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 11 32 12 | | .2.|
|00000ae0| 31 46 61 63 74 6f 72 12 | 30 11 31 13 0d 0a 00 20 |1Factor.|0.1.... |
|00000af0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000b00| 20 20 20 20 20 20 20 20 | 20 33 0d 0b 00 20 20 20 | | 3... |
|00000b10| 20 20 32 11 33 78 20 11 | 31 2d 20 33 20 3d 20 30 | 2.3x .|1- 3 = 0|
|00000b20| 20 20 11 34 35 35 36 20 | 20 11 33 78 20 11 31 3d | .4556 | .3x .1=|
|00000b30| 20 11 34 32 20 20 20 20 | 20 20 20 20 20 20 20 20 | .42 | |
|00000b40| 20 20 20 11 32 12 31 53 | 65 74 20 66 69 72 73 74 | .2.1S|et first|
|00000b50| 20 66 61 63 74 6f 72 20 | 65 71 75 61 6c 20 74 6f | factor |equal to|
|00000b60| 20 30 12 30 0d 0b 00 20 | 20 20 20 20 20 20 20 20 | 0.0... | |
|00000b70| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000b80| 20 11 31 32 20 20 20 20 | 20 20 20 20 20 20 20 20 | .12 | |
|00000b90| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000ba0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000bb0| 20 20 20 20 13 0d 0a 00 | 20 20 20 20 20 20 11 33 | ....| .3|
|00000bc0| 78 20 11 31 2d 20 31 20 | 3d 20 30 20 20 11 34 35 |x .1- 1 |= 0 .45|
|00000bd0| 35 36 20 20 11 33 78 20 | 11 31 3d 20 31 20 20 20 |56 .3x |.1= 1 |
|00000be0| 20 20 20 20 20 20 20 20 | 20 20 20 20 11 32 12 31 | | .2.1|
|00000bf0| 53 65 74 20 73 65 63 6f | 6e 64 20 66 61 63 74 6f |Set seco|nd facto|
|00000c00| 72 20 65 71 75 61 6c 20 | 74 6f 20 30 12 30 0d 0b |r equal |to 0.0..|
|00000c10| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|00000c20| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000c30| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000c40| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000c50| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 11 31 13 | | .1.|
|00000c60| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|00000c70| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000c80| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000c90| 11 34 28 11 31 33 20 20 | 20 11 34 29 0d 0b 00 11 |.4(.13 | .4)....|
|00000ca0| 31 54 68 65 72 65 66 6f | 72 65 2c 20 74 68 65 20 |1Therefo|re, the |
|00000cb0| 11 33 78 11 31 2d 69 6e | 74 65 72 63 65 70 74 73 |.3x.1-in|tercepts|
|00000cc0| 20 6f 66 20 74 68 65 20 | 67 72 61 70 68 20 61 72 | of the |graph ar|
|00000cd0| 65 20 11 34 21 32 11 31 | 2c 20 30 11 34 21 20 11 |e .4!2.1|, 0.4! .|
|00000ce0| 31 61 6e 64 20 28 31 2c | 20 30 29 2e 0d 0b 00 20 |1and (1,| 0).... |
|00000cf0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000d00| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000d10| 20 20 20 20 20 20 20 20 | 20 20 20 20 11 34 39 11 | | .49.|
|00000d20| 31 32 20 20 20 11 34 30 | 20 20 20 20 20 20 20 20 |12 .40| |
|00000d30| 20 20 20 20 11 31 13 0d | 0a 00 54 6f 20 66 69 6e | .1..|..To fin|
|00000d40| 64 20 74 68 65 20 11 33 | 79 11 31 2d 69 6e 74 65 |d the .3|y.1-inte|
|00000d50| 72 63 65 70 74 2c 20 77 | 65 20 6c 65 74 20 11 33 |rcept, w|e let .3|
|00000d60| 78 20 11 31 3d 20 30 20 | 61 6e 64 20 73 6f 6c 76 |x .1= 0 |and solv|
|00000d70| 65 20 66 6f 72 20 11 33 | 79 11 31 2e 0d 0a 00 20 |e for .3|y.1.... |
|00000d80| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000d90| 11 32 32 0d 0b 00 20 20 | 20 20 20 20 20 20 20 20 |.22... | |
|00000da0| 11 33 79 20 11 31 3d 20 | 32 28 30 20 29 20 2d 20 |.3y .1= |2(0 ) - |
|00000db0| 35 28 30 29 20 2b 20 33 | 20 3d 20 33 13 0d 0a 00 |5(0) + 3| = 3....|
|00000dc0| 0d 0b 00 54 68 65 72 65 | 66 6f 72 65 2c 20 74 68 |...There|fore, th|
|00000dd0| 65 20 11 33 79 11 31 2d | 69 6e 74 65 72 63 65 70 |e .3y.1-|intercep|
|00000de0| 74 20 6f 63 63 75 72 73 | 20 61 74 20 28 30 2c 20 |t occurs| at (0, |
|00000df0| 33 29 2e 0d 0a 00 53 65 | 63 74 69 6f 6e 20 31 2e |3)....Se|ction 1.|
|00000e00| 31 20 20 47 72 61 70 68 | 73 20 61 6e 64 20 47 72 |1 Graph|s and Gr|
|00000e10| 61 70 68 69 6e 67 20 55 | 74 69 6c 69 74 69 65 73 |aphing U|tilities|
|00000e20| 0d 0b 00 43 68 65 63 6b | 20 66 6f 72 20 73 79 6d |...Check| for sym|
|00000e30| 6d 65 74 72 79 20 77 69 | 74 68 20 72 65 73 70 65 |metry wi|th respe|
|00000e40| 63 74 20 74 6f 20 62 6f | 74 68 20 61 78 65 73 20 |ct to bo|th axes |
|00000e50| 61 6e 64 20 74 6f 20 74 | 68 65 20 6f 72 69 67 69 |and to t|he origi|
|00000e60| 6e 2e 0d 0a 00 20 20 20 | 20 20 20 20 20 20 20 20 |n.... | |
|00000e70| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000e80| 20 20 20 20 11 33 78 0d | 0b 00 20 20 20 20 20 20 | .3x.|.. |
|00000e90| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000ea0| 20 20 79 20 11 31 3d 20 | 11 34 32 32 32 32 32 32 | y .1= |.4222222|
|00000eb0| 20 0d 0b 00 20 20 20 20 | 20 20 20 20 20 20 20 20 | ... | |
|00000ec0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000ed0| 20 11 32 32 0d 0b 00 20 | 20 20 20 20 20 20 20 20 | .22... | |
|00000ee0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000ef0| 20 20 20 11 33 78 20 20 | 11 31 2b 20 33 0d 0a 00 | .3x |.1+ 3...|
|00000f00| 0d 0b 00 13 12 31 53 4f | 4c 55 54 49 4f 4e 12 30 |.....1SO|LUTION.0|
|00000f10| 0d 0a 00 0d 0b 00 54 6f | 20 74 65 73 74 20 66 6f |......To| test fo|
|00000f20| 72 20 73 79 6d 6d 65 74 | 72 79 20 77 69 74 68 20 |r symmet|ry with |
|00000f30| 72 65 73 70 65 63 74 20 | 74 6f 20 74 68 65 20 11 |respect |to the .|
|00000f40| 33 79 11 31 2d 61 78 69 | 73 2c 20 77 65 20 73 75 |3y.1-axi|s, we su|
|00000f50| 62 73 74 69 74 75 74 65 | 20 2d 11 33 78 20 11 31 |bstitute| -.3x .1|
|00000f60| 66 6f 72 20 11 33 78 20 | 11 31 69 6e 20 0d 0a 00 |for .3x |.1in ...|
|00000f70| 74 68 65 20 67 69 76 65 | 6e 20 65 71 75 61 74 69 |the give|n equati|
|00000f80| 6f 6e 2e 0d 0a 00 20 20 | 20 20 20 20 20 20 20 20 |on.... | |
|00000f90| 20 20 20 20 20 20 20 11 | 33 78 0d 0b 00 20 20 20 | .|3x... |
|00000fa0| 20 20 20 20 20 20 20 79 | 20 11 31 3d 20 11 34 32 | y| .1= .42|
|00000fb0| 32 32 32 32 32 20 20 20 | 20 20 20 20 20 20 20 20 |22222 | |
|00000fc0| 20 20 20 20 20 20 20 20 | 20 20 11 32 12 31 47 69 | | .2.1Gi|
|00000fd0| 76 65 6e 20 65 71 75 61 | 74 69 6f 6e 12 30 0d 0b |ven equa|tion.0..|
|00000fe0| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|00000ff0| 32 0d 0b 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |2... | |
|00001000| 20 20 11 33 78 20 20 11 | 31 2b 20 33 13 0d 0a 00 | .3x .|1+ 3....|
|00001010| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|00001020| 20 20 20 20 20 2d 11 33 | 78 20 20 20 20 20 20 20 | -.3|x |
|00001030| 20 11 31 2d 11 33 78 0d | 0b 00 20 20 20 20 20 20 | .1-.3x.|.. |
|00001040| 20 20 20 20 79 20 11 31 | 3d 20 11 34 32 32 32 32 | y .1|= .42222|
|00001050| 32 32 32 32 32 20 11 31 | 3d 20 11 34 32 32 32 32 |22222 .1|= .42222|
|00001060| 32 32 20 20 20 20 20 20 | 20 20 20 11 32 12 31 53 |22 | .2.1S|
|00001070| 75 62 73 74 69 74 75 74 | 65 20 2d 78 20 66 6f 72 |ubstitut|e -x for|
|00001080| 20 78 12 30 0d 0b 00 20 | 20 20 20 20 20 20 20 20 | x.0... | |
|00001090| 20 20 20 20 20 20 20 20 | 20 32 20 20 20 20 20 20 | | 2 |
|000010a0| 20 20 32 0d 0b 00 20 20 | 20 20 20 20 20 20 20 20 | 2... | |
|000010b0| 20 20 20 20 11 31 28 2d | 11 33 78 11 31 29 20 20 | .1(-|.3x.1) |
|000010c0| 2b 20 33 20 20 20 11 33 | 78 20 20 11 31 2b 20 33 |+ 3 .3|x .1+ 3|
|000010d0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000010e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000010f0| 20 20 13 0d 0a 00 0d 0b | 00 53 69 6e 63 65 20 74 | ......|.Since t|
|00001100| 68 65 20 73 75 62 73 74 | 69 74 75 74 69 6f 6e 20 |he subst|itution |
|00001110| 64 6f 65 73 20 6e 6f 74 | 20 70 72 6f 64 75 63 65 |does not| produce|
|00001120| 20 61 6e 20 65 71 75 61 | 74 69 6f 6e 20 74 68 61 | an equa|tion tha|
|00001130| 74 20 69 73 20 65 71 75 | 69 76 61 6c 65 6e 74 20 |t is equ|ivalent |
|00001140| 74 6f 20 74 68 65 0d 0a | 00 67 69 76 65 6e 20 65 |to the..|.given e|
|00001150| 71 75 61 74 69 6f 6e 2c | 20 77 65 20 63 6f 6e 63 |quation,| we conc|
|00001160| 6c 75 64 65 20 74 68 61 | 74 20 74 68 65 20 67 72 |lude tha|t the gr|
|00001170| 61 70 68 20 69 73 20 6e | 6f 74 20 73 79 6d 6d 65 |aph is n|ot symme|
|00001180| 74 72 69 63 20 77 69 74 | 68 20 72 65 73 70 65 63 |tric wit|h respec|
|00001190| 74 20 74 6f 0d 0a 00 74 | 68 65 20 11 33 79 11 31 |t to...t|he .3y.1|
|000011a0| 2d 61 78 69 73 2e 00 0c | 0d 0a 00 54 6f 20 74 65 |-axis...|...To te|
|000011b0| 73 74 20 66 6f 72 20 73 | 79 6d 6d 65 74 72 79 20 |st for s|ymmetry |
|000011c0| 77 69 74 68 20 72 65 73 | 70 65 63 74 20 74 6f 20 |with res|pect to |
|000011d0| 74 68 65 20 11 33 78 11 | 31 2d 61 78 69 73 2c 20 |the .3x.|1-axis, |
|000011e0| 77 65 20 73 75 62 73 74 | 69 74 75 74 65 20 2d 11 |we subst|itute -.|
|000011f0| 33 79 20 11 31 66 6f 72 | 20 11 33 79 20 11 31 69 |3y .1for| .3y .1i|
|00001200| 6e 0d 0a 00 74 68 65 20 | 67 69 76 65 6e 20 65 71 |n...the |given eq|
|00001210| 75 61 74 69 6f 6e 2e 0d | 0a 00 20 20 20 20 20 20 |uation..|.. |
|00001220| 20 20 20 20 20 20 20 20 | 20 20 20 11 33 78 0d 0b | | .3x..|
|00001230| 00 20 20 20 20 20 20 20 | 20 20 20 79 20 11 31 3d |. | y .1=|
|00001240| 20 11 34 32 32 32 32 32 | 32 20 20 20 20 20 20 20 | .422222|2 |
|00001250| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 11 32 | | .2|
|00001260| 12 31 47 69 76 65 6e 20 | 65 71 75 61 74 69 6f 6e |.1Given |equation|
|00001270| 12 30 0d 0b 00 20 20 20 | 20 20 20 20 20 20 20 20 |.0... | |
|00001280| 20 20 20 20 32 0d 0b 00 | 20 20 20 20 20 20 20 20 | 2...| |
|00001290| 20 20 20 20 20 20 11 33 | 78 20 20 11 31 2b 20 33 | .3|x .1+ 3|
|000012a0| 13 0d 0a 00 0d 0b 00 20 | 20 20 20 20 20 20 20 20 |....... | |
|000012b0| 20 20 20 20 20 20 20 20 | 11 33 78 0d 0b 00 20 20 | |.3x... |
|000012c0| 20 20 20 20 20 20 20 11 | 31 2d 11 33 79 20 11 31 | .|1-.3y .1|
|000012d0| 3d 20 11 34 32 32 32 32 | 32 32 20 20 20 20 20 20 |= .42222|22 |
|000012e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 | | .|
|000012f0| 32 12 31 53 75 62 73 74 | 69 74 75 74 65 20 2d 79 |2.1Subst|itute -y|
|00001300| 20 66 6f 72 20 79 12 30 | 0d 0b 00 20 20 20 20 20 | for y.0|... |
|00001310| 20 20 20 20 20 20 20 20 | 20 20 32 0d 0b 00 20 20 | | 2... |
|00001320| 20 20 20 20 20 20 20 20 | 20 20 20 20 11 33 78 20 | | .3x |
|00001330| 20 11 31 2b 20 33 20 20 | 20 20 20 20 20 20 20 20 | .1+ 3 | |
|00001340| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001350| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001360| 20 20 20 20 13 0d 0a 00 | 0d 0b 00 20 20 20 20 20 | ....|... |
|00001370| 20 20 20 20 20 20 20 20 | 20 20 20 2d 11 33 78 0d | | -.3x.|
|00001380| 0b 00 20 20 20 20 20 20 | 20 20 20 20 79 20 11 31 |.. | y .1|
|00001390| 3d 20 11 34 32 32 32 32 | 32 32 32 20 20 20 20 20 |= .42222|222 |
|000013a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 | | .|
|000013b0| 32 12 31 4d 75 6c 74 69 | 70 6c 79 20 62 6f 74 68 |2.1Multi|ply both|
|000013c0| 20 73 69 64 65 73 20 62 | 79 20 2d 31 11 31 12 30 | sides b|y -1.1.0|
|000013d0| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|000013e0| 20 20 11 32 32 0d 0b 00 | 20 20 20 20 20 20 20 20 | .22...| |
|000013f0| 20 20 20 20 20 20 11 33 | 78 20 20 11 31 2b 20 33 | .3|x .1+ 3|
|00001400| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001410| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001420| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001430| 20 20 20 20 13 0d 0a 00 | 0d 0b 00 53 69 6e 63 65 | ....|...Since|
|00001440| 20 74 68 65 20 73 75 62 | 73 74 69 74 75 74 69 6f | the sub|stitutio|
|00001450| 6e 20 64 6f 65 73 20 6e | 6f 74 20 70 72 6f 64 75 |n does n|ot produ|
|00001460| 63 65 20 61 6e 20 65 71 | 75 61 74 69 6f 6e 20 74 |ce an eq|uation t|
|00001470| 68 61 74 20 69 73 20 65 | 71 75 69 76 61 6c 65 6e |hat is e|quivalen|
|00001480| 74 20 74 6f 20 74 68 65 | 0d 0a 00 67 69 76 65 6e |t to the|...given|
|00001490| 20 65 71 75 61 74 69 6f | 6e 2c 20 77 65 20 63 6f | equatio|n, we co|
|000014a0| 6e 63 6c 75 64 65 20 74 | 68 61 74 20 74 68 65 20 |nclude t|hat the |
|000014b0| 67 72 61 70 68 20 69 73 | 20 6e 6f 74 20 73 79 6d |graph is| not sym|
|000014c0| 6d 65 74 72 69 63 20 77 | 69 74 68 20 72 65 73 70 |metric w|ith resp|
|000014d0| 65 63 74 20 74 6f 0d 0a | 00 74 68 65 20 11 33 78 |ect to..|.the .3x|
|000014e0| 11 31 2d 61 78 69 73 2e | 13 0d 0a 00 0d 0b 00 54 |.1-axis.|.......T|
|000014f0| 6f 20 74 65 73 74 20 66 | 6f 72 20 73 79 6d 6d 65 |o test f|or symme|
|00001500| 74 72 79 20 77 69 74 68 | 20 72 65 73 70 65 63 74 |try with| respect|
|00001510| 20 74 6f 20 74 68 65 20 | 6f 72 69 67 69 6e 2c 20 | to the |origin, |
|00001520| 77 65 20 73 75 62 73 74 | 69 74 75 74 65 20 2d 11 |we subst|itute -.|
|00001530| 33 78 20 11 31 66 6f 72 | 20 11 33 78 20 11 31 61 |3x .1for| .3x .1a|
|00001540| 6e 64 0d 0a 00 2d 11 33 | 79 20 11 31 66 6f 72 20 |nd...-.3|y .1for |
|00001550| 11 33 79 20 11 31 69 6e | 20 74 68 65 20 67 69 76 |.3y .1in| the giv|
|00001560| 65 6e 20 65 71 75 61 74 | 69 6f 6e 2e 00 0c 0d 0a |en equat|ion.....|
|00001570| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|00001580| 20 20 11 33 78 0d 0b 00 | 20 20 20 20 20 20 20 20 | .3x...| |
|00001590| 20 20 79 20 11 31 3d 20 | 11 34 32 32 32 32 32 32 | y .1= |.4222222|
|000015a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000015b0| 20 20 20 20 20 11 32 12 | 31 47 69 76 65 6e 20 65 | .2.|1Given e|
|000015c0| 71 75 61 74 69 6f 6e 12 | 30 0d 0b 00 20 20 20 20 |quation.|0... |
|000015d0| 20 20 20 20 20 20 20 20 | 20 20 20 32 0d 0b 00 20 | | 2... |
|000015e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 11 33 78 | | .3x|
|000015f0| 20 20 11 31 2b 20 33 13 | 0d 0a 00 20 20 20 20 20 | .1+ 3.|... |
|00001600| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 2d 11 33 | | -.3|
|00001610| 78 20 20 20 20 20 20 20 | 20 11 31 2d 11 33 78 0d |x | .1-.3x.|
|00001620| 0b 00 20 20 20 20 20 20 | 20 20 20 11 31 2d 11 33 |.. | .1-.3|
|00001630| 79 20 11 31 3d 20 11 34 | 32 32 32 32 32 32 32 32 |y .1= .4|22222222|
|00001640| 32 20 11 31 3d 20 11 34 | 32 32 32 32 32 32 20 20 |2 .1= .4|222222 |
|00001650| 20 20 20 20 20 20 20 11 | 32 12 31 53 75 62 73 74 | .|2.1Subst|
|00001660| 69 74 75 74 65 20 2d 78 | 20 66 6f 72 20 78 2c 20 |itute -x| for x, |
|00001670| 2d 79 20 66 6f 72 20 79 | 12 30 0d 0b 00 20 20 20 |-y for y|.0... |
|00001680| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 32 | | 2|
|00001690| 20 20 20 20 20 20 20 20 | 32 0d 0b 00 20 20 20 20 | |2... |
|000016a0| 20 20 20 20 20 20 20 20 | 20 20 11 31 28 2d 11 33 | | .1(-.3|
|000016b0| 78 11 31 29 20 20 2b 20 | 33 20 20 20 11 33 78 20 |x.1) + |3 .3x |
|000016c0| 20 11 31 2b 20 33 13 0d | 0a 00 20 20 20 20 20 20 | .1+ 3..|.. |
|000016d0| 20 20 20 20 20 20 20 20 | 20 20 20 11 33 78 0d 0b | | .3x..|
|000016e0| 00 20 20 20 20 20 20 20 | 20 20 20 79 20 11 31 3d |. | y .1=|
|000016f0| 20 11 34 32 32 32 32 32 | 32 20 20 20 20 20 20 20 | .422222|2 |
|00001700| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 11 32 | | .2|
|00001710| 12 31 4d 75 6c 74 69 70 | 6c 79 20 62 6f 74 68 20 |.1Multip|ly both |
|00001720| 73 69 64 65 73 20 62 79 | 20 2d 31 12 30 0d 0b 00 |sides by| -1.0...|
|00001730| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 32 | | 2|
|00001740| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|00001750| 20 11 33 78 20 20 11 31 | 2b 20 33 0d 0b 00 20 20 | .3x .1|+ 3... |
|00001760| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001770| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001780| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001790| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000017a0| 20 20 20 20 20 20 13 0d | 0a 00 53 69 6e 63 65 20 | ..|..Since |
|000017b0| 74 68 65 20 73 75 62 73 | 74 69 74 75 74 69 6f 6e |the subs|titution|
|000017c0| 20 70 72 6f 64 75 63 65 | 73 20 61 6e 20 65 71 75 | produce|s an equ|
|000017d0| 61 74 69 6f 6e 20 74 68 | 61 74 20 69 73 20 65 71 |ation th|at is eq|
|000017e0| 75 69 76 61 6c 65 6e 74 | 20 74 6f 20 74 68 65 20 |uivalent| to the |
|000017f0| 67 69 76 65 6e 0d 0a 00 | 65 71 75 61 74 69 6f 6e |given...|equation|
|00001800| 2c 20 77 65 20 63 6f 6e | 63 6c 75 64 65 20 74 68 |, we con|clude th|
|00001810| 61 74 20 74 68 65 20 67 | 72 61 70 68 20 69 73 20 |at the g|raph is |
|00001820| 73 79 6d 6d 65 74 72 69 | 63 20 77 69 74 68 20 72 |symmetri|c with r|
|00001830| 65 73 70 65 63 74 20 74 | 6f 20 74 68 65 20 6f 72 |espect t|o the or|
|00001840| 69 67 69 6e 2e 0d 0a 00 | 53 65 63 74 69 6f 6e 20 |igin....|Section |
|00001850| 31 2e 31 20 20 47 72 61 | 70 68 73 20 61 6e 64 20 |1.1 Gra|phs and |
|00001860| 47 72 61 70 68 69 6e 67 | 20 55 74 69 6c 69 74 69 |Graphing| Utiliti|
|00001870| 65 73 0d 0b 00 46 69 6e | 64 20 74 68 65 20 73 74 |es...Fin|d the st|
|00001880| 61 6e 64 61 72 64 20 66 | 6f 72 6d 20 6f 66 20 74 |andard f|orm of t|
|00001890| 68 65 20 63 69 72 63 6c | 65 20 77 68 6f 73 65 20 |he circl|e whose |
|000018a0| 63 65 6e 74 65 72 20 6c | 69 65 73 20 61 74 20 28 |center l|ies at (|
|000018b0| 32 2c 20 2d 33 29 20 61 | 6e 64 20 0d 0a 00 77 68 |2, -3) a|nd ...wh|
|000018c0| 6f 73 65 20 72 61 64 69 | 75 73 20 69 73 20 34 2e |ose radi|us is 4.|
|000018d0| 0d 0a 00 0d 0b 00 13 12 | 31 53 4f 4c 55 54 49 4f |........|1SOLUTIO|
|000018e0| 4e 12 30 0d 0a 00 0d 0b | 00 55 73 69 6e 67 20 74 |N.0.....|.Using t|
|000018f0| 68 65 20 73 74 61 6e 64 | 61 72 64 20 66 6f 72 6d |he stand|ard form|
|00001900| 20 6f 66 20 74 68 65 20 | 65 71 75 61 74 69 6f 6e | of the |equation|
|00001910| 20 6f 66 20 61 20 63 69 | 72 63 6c 65 0d 0a 00 20 | of a ci|rcle... |
|00001920| 20 20 20 20 20 20 20 20 | 20 20 20 11 32 32 20 20 | | .22 |
|00001930| 20 20 20 20 20 20 20 20 | 32 20 20 20 20 32 0d 0b | |2 2..|
|00001940| 00 20 20 20 20 20 11 31 | 28 11 33 78 20 11 31 2d |. .1|(.3x .1-|
|00001950| 20 11 33 68 11 31 29 20 | 20 2b 20 28 11 33 79 20 | .3h.1) | + (.3y |
|00001960| 11 31 2d 20 11 33 6b 11 | 31 29 20 20 3d 20 11 33 |.1- .3k.|1) = .3|
|00001970| 72 0d 0a 00 0d 0b 00 11 | 31 77 68 65 72 65 20 28 |r.......|1where (|
|00001980| 11 33 68 11 31 2c 20 11 | 33 6b 11 31 29 20 69 73 |.3h.1, .|3k.1) is|
|00001990| 20 74 68 65 20 63 65 6e | 74 65 72 20 61 6e 64 20 | the cen|ter and |
|000019a0| 11 33 72 20 11 31 69 73 | 20 74 68 65 20 72 61 64 |.3r .1is| the rad|
|000019b0| 69 75 73 2c 20 77 65 20 | 6c 65 74 20 11 33 68 20 |ius, we |let .3h |
|000019c0| 11 31 3d 20 32 2c 20 11 | 33 6b 20 11 31 3d 20 2d |.1= 2, .|3k .1= -|
|000019d0| 33 2c 20 61 6e 64 0d 0a | 00 11 33 72 20 11 31 3d |3, and..|..3r .1=|
|000019e0| 20 34 2e 13 0d 0a 00 0d | 0b 00 54 68 65 6e 20 74 | 4......|..Then t|
|000019f0| 68 65 20 73 74 61 6e 64 | 61 72 64 20 66 6f 72 6d |he stand|ard form|
|00001a00| 20 6f 66 20 74 68 65 20 | 65 71 75 61 74 69 6f 6e | of the |equation|
|00001a10| 20 62 65 63 6f 6d 65 73 | 0d 0a 00 0d 0b 00 20 20 | becomes|...... |
|00001a20| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001a30| 11 32 32 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.22 | |
|00001a40| 32 20 20 20 20 32 0d 0b | 00 20 20 20 20 20 20 20 |2 2..|. |
|00001a50| 20 20 20 20 11 31 28 11 | 33 78 20 11 31 2d 20 32 | .1(.|3x .1- 2|
|00001a60| 29 20 20 2b 20 5b 11 33 | 79 20 11 31 2d 20 28 2d |) + [.3|y .1- (-|
|00001a70| 33 29 5d 20 20 3d 20 34 | 20 13 0d 0a 00 0d 0b 00 |3)] = 4| .......|
|00001a80| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001a90| 20 20 20 20 20 11 32 32 | 20 20 20 20 20 20 20 20 | .22| |
|00001aa0| 20 20 32 0d 0b 00 20 20 | 20 20 20 20 20 20 20 20 | 2... | |
|00001ab0| 20 20 20 20 11 31 28 11 | 33 78 20 11 31 2d 20 32 | .1(.|3x .1- 2|
|00001ac0| 29 20 20 2b 20 28 11 33 | 79 20 11 31 2b 20 33 29 |) + (.3|y .1+ 3)|
|00001ad0| 20 20 3d 20 31 36 2e 0d | 0a 00 53 65 63 74 69 6f | = 16..|..Sectio|
|00001ae0| 6e 20 31 2e 31 20 20 47 | 72 61 70 68 73 20 61 6e |n 1.1 G|raphs an|
|00001af0| 64 20 47 72 61 70 68 69 | 6e 67 20 55 74 69 6c 69 |d Graphi|ng Utili|
|00001b00| 74 69 65 73 0d 0b 00 57 | 72 69 74 65 20 74 68 65 |ties...W|rite the|
|00001b10| 20 65 71 75 61 74 69 6f | 6e 20 6f 66 20 74 68 65 | equatio|n of the|
|00001b20| 20 63 69 72 63 6c 65 20 | 69 6e 20 73 74 61 6e 64 | circle |in stand|
|00001b30| 61 72 64 20 66 6f 72 6d | 2c 20 66 69 6e 64 20 69 |ard form|, find i|
|00001b40| 74 73 20 63 65 6e 74 65 | 72 20 61 6e 64 20 72 61 |ts cente|r and ra|
|00001b50| 64 69 75 73 2c 0d 0a 00 | 61 6e 64 20 73 6b 65 74 |dius,...|and sket|
|00001b60| 63 68 20 69 74 73 20 67 | 72 61 70 68 2e 0d 0a 00 |ch its g|raph....|
|00001b70| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001b80| 20 20 20 20 20 11 32 32 | 20 20 20 20 32 0d 0b 00 | .22| 2...|
|00001b90| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001ba0| 20 20 20 20 11 33 78 20 | 20 11 31 2b 20 11 33 79 | .3x | .1+ .3y|
|00001bb0| 20 20 11 31 2b 20 32 11 | 33 78 20 11 31 2d 20 34 | .1+ 2.|3x .1- 4|
|00001bc0| 11 33 79 20 11 31 2d 20 | 34 20 3d 20 30 0d 0a 00 |.3y .1- |4 = 0...|
|00001bd0| 0d 0b 00 13 12 31 53 4f | 4c 55 54 49 4f 4e 12 30 |.....1SO|LUTION.0|
|00001be0| 0d 0a 00 0d 0b 00 57 65 | 20 62 65 67 69 6e 20 62 |......We| begin b|
|00001bf0| 79 20 63 6f 6d 70 6c 65 | 74 69 6e 67 20 74 68 65 |y comple|ting the|
|00001c00| 20 73 71 75 61 72 65 2c | 20 61 73 20 66 6f 6c 6c | square,| as foll|
|00001c10| 6f 77 73 2e 0d 0a 00 0d | 0b 00 20 20 20 20 20 20 |ows.....|.. |
|00001c20| 20 20 20 20 20 20 20 11 | 32 32 20 20 20 20 32 0d | .|22 2.|
|00001c30| 0b 00 20 20 20 20 20 20 | 20 20 20 20 20 20 11 33 |.. | .3|
|00001c40| 78 20 20 11 31 2b 20 11 | 33 79 20 20 11 31 2b 20 |x .1+ .|3y .1+ |
|00001c50| 32 11 33 78 20 11 31 2d | 20 34 11 33 79 20 11 31 |2.3x .1-| 4.3y .1|
|00001c60| 2d 20 34 20 3d 20 30 20 | 20 20 20 20 20 20 20 20 |- 4 = 0 | |
|00001c70| 20 20 20 20 11 32 12 31 | 47 65 6e 65 72 61 6c 20 | .2.1|General |
|00001c80| 66 6f 72 6d 12 30 11 31 | 13 0d 0a 00 0d 0b 00 20 |form.0.1|....... |
|00001c90| 20 20 20 11 32 32 20 20 | 20 20 20 20 20 20 20 20 | .22 | |
|00001ca0| 20 20 20 20 20 20 32 0d | 0b 00 20 20 11 31 28 11 | 2.|.. .1(.|
|00001cb0| 33 78 20 20 11 31 2b 20 | 32 11 33 78 20 20 20 20 |3x .1+ |2.3x |
|00001cc0| 20 11 31 29 20 2b 20 28 | 11 33 79 20 20 11 31 2d | .1) + (|.3y .1-|
|00001cd0| 20 34 11 33 79 20 20 20 | 20 20 11 31 29 20 3d 20 | 4.3y | .1) = |
|00001ce0| 34 20 20 20 20 20 20 20 | 20 20 20 20 20 20 11 32 |4 | .2|
|00001cf0| 12 31 47 72 6f 75 70 20 | 74 65 72 6d 73 12 30 11 |.1Group |terms.0.|
|00001d00| 31 13 0d 0a 00 0d 0b 00 | 20 20 20 20 11 32 32 20 |1.......| .22 |
|00001d10| 20 20 20 20 20 20 20 20 | 32 20 20 20 20 20 20 32 | |2 2|
|00001d20| 20 20 20 20 20 20 20 20 | 20 32 0d 0b 00 20 20 11 | | 2... .|
|00001d30| 31 28 11 33 78 20 20 11 | 31 2b 20 32 78 20 2b 20 |1(.3x .|1+ 2x + |
|00001d40| 31 20 29 20 2b 20 28 11 | 33 79 20 20 11 31 2d 20 |1 ) + (.|3y .1- |
|00001d50| 34 11 33 79 20 11 31 2b | 20 32 20 29 20 3d 20 34 |4.3y .1+| 2 ) = 4|
|00001d60| 20 2b 20 31 20 2b 20 34 | 20 20 20 20 20 11 32 12 | + 1 + 4| .2.|
|00001d70| 31 43 6f 6d 70 6c 65 74 | 65 20 74 68 65 20 73 71 |1Complet|e the sq|
|00001d80| 75 61 72 65 73 12 30 0d | 0a 00 20 20 20 20 20 20 |uares.0.|.. |
|00001d90| 20 20 11 31 12 31 11 34 | 21 20 20 20 20 5e 20 20 | .1.1.4|! ^ |
|00001da0| 20 20 20 20 20 20 20 20 | 20 21 20 20 20 20 5e 20 | | ! ^ |
|00001db0| 11 31 12 30 0d 0b 00 20 | 20 20 20 20 20 20 20 12 |.1.0... | .|
|00001dc0| 31 11 34 6c 32 32 32 32 | 6a 20 20 20 20 20 20 20 |1.4l2222|j |
|00001dd0| 20 20 20 20 6c 32 32 32 | 32 6a 20 11 31 12 30 0d | l222|2j .1.0.|
|00001de0| 0b 00 20 20 20 20 20 20 | 20 20 12 31 20 20 20 20 |.. | .1 |
|00001df0| 20 20 11 32 32 20 20 20 | 20 20 20 20 20 20 20 20 | .22 | |
|00001e00| 20 20 20 20 20 32 11 31 | 12 30 0d 0b 00 20 20 20 | 2.1|.0... |
|00001e10| 20 20 20 20 20 12 31 11 | 32 28 68 61 6c 66 29 20 | .1.|2(half) |
|00001e20| 20 20 20 20 20 20 20 20 | 20 20 28 68 61 6c 66 29 | | (half)|
|00001e30| 20 11 31 12 30 20 20 20 | 20 20 20 20 20 20 20 20 | .1.0 | |
|00001e40| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001e50| 20 20 20 20 20 20 20 20 | 20 20 20 13 0d 0a 00 20 | | .... |
|00001e60| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001e70| 20 20 20 20 11 32 32 20 | 20 20 20 20 20 20 20 20 | .22 | |
|00001e80| 20 32 0d 0b 00 20 20 20 | 20 20 20 20 20 20 20 20 | 2... | |
|00001e90| 20 20 20 11 31 28 11 33 | 78 20 11 31 2b 20 31 29 | .1(.3|x .1+ 1)|
|00001ea0| 20 20 2b 20 28 11 33 79 | 20 11 31 2d 20 32 29 20 | + (.3y| .1- 2) |
|00001eb0| 20 3d 20 39 20 20 20 20 | 20 20 20 20 20 20 20 20 | = 9 | |
|00001ec0| 20 11 32 12 31 53 74 61 | 6e 64 61 72 64 20 66 6f | .2.1Sta|ndard fo|
|00001ed0| 72 6d 11 31 12 30 0d 0a | 00 0d 0a 00 46 72 6f 6d |rm.1.0..|....From|
|00001ee0| 20 74 68 69 73 20 73 74 | 61 6e 64 61 72 64 20 66 | this st|andard f|
|00001ef0| 6f 72 6d 2c 20 77 65 20 | 73 65 65 20 74 68 61 74 |orm, we |see that|
|00001f00| 20 74 68 65 20 63 65 6e | 74 65 72 20 6f 66 20 74 | the cen|ter of t|
|00001f10| 68 65 20 63 69 72 63 6c | 65 20 69 73 20 61 74 20 |he circl|e is at |
|00001f20| 74 68 65 0d 0a 00 70 6f | 69 6e 74 20 28 2d 31 2c |the...po|int (-1,|
|00001f30| 20 32 29 20 61 6e 64 20 | 74 68 65 20 72 61 64 69 | 2) and |the radi|
|00001f40| 75 73 20 6f 66 20 74 68 | 65 20 63 69 72 63 6c 65 |us of th|e circle|
|00001f50| 20 69 73 20 33 2e 13 0d | 0a 00 0d 0b 00 55 73 69 | is 3...|.....Usi|
|00001f60| 6e 67 20 74 68 69 73 20 | 69 6e 66 6f 72 6d 61 74 |ng this |informat|
|00001f70| 69 6f 6e 2c 20 77 65 20 | 73 6b 65 74 63 68 20 74 |ion, we |sketch t|
|00001f80| 68 65 20 67 72 61 70 68 | 20 6f 66 20 74 68 65 20 |he graph| of the |
|00001f90| 63 69 72 63 6c 65 20 61 | 73 20 73 68 6f 77 6e 20 |circle a|s shown |
|00001fa0| 62 65 6c 6f 77 2e 0d 0a | 00 20 20 20 20 20 20 20 |below...|. |
|00001fb0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001fc0| 14 6b 33 2d 32 2d 39 2e | 6d 14 32 31 14 31 31 14 |.k3-2-9.|m.21.11.|
|00001fd0| 35 30 14 38 14 0d 0a 00 | 53 65 63 74 69 6f 6e 20 |50.8....|Section |
|00001fe0| 31 2e 31 20 20 47 72 61 | 70 68 73 20 61 6e 64 20 |1.1 Gra|phs and |
|00001ff0| 47 72 61 70 68 69 6e 67 | 20 55 74 69 6c 69 74 69 |Graphing| Utiliti|
|00002000| 65 73 0d 0b 00 53 6b 65 | 74 63 68 20 74 68 65 20 |es...Ske|tch the |
|00002010| 67 72 61 70 68 20 6f 66 | 20 11 33 79 20 11 31 3d |graph of| .3y .1=|
|00002020| 20 35 20 2d 20 32 11 33 | 78 11 31 2e 20 20 49 64 | 5 - 2.3|x.1. Id|
|00002030| 65 6e 74 69 66 79 20 61 | 6e 79 20 69 6e 74 65 72 |entify a|ny inter|
|00002040| 63 65 70 74 73 20 61 6e | 64 20 74 65 73 74 20 66 |cepts an|d test f|
|00002050| 6f 72 0d 0a 00 73 79 6d | 6d 65 74 72 79 2e 0d 0a |or...sym|metry...|
|00002060| 00 0d 0b 00 13 12 31 53 | 4f 4c 55 54 49 4f 4e 12 |......1S|OLUTION.|
|00002070| 30 0d 0a 00 0d 0b 00 4c | 65 74 74 69 6e 67 20 11 |0......L|etting .|
|00002080| 33 78 20 11 31 3d 20 30 | 2c 20 77 65 20 73 65 65 |3x .1= 0|, we see|
|00002090| 20 74 68 61 74 20 74 68 | 65 20 11 33 79 11 31 2d | that th|e .3y.1-|
|000020a0| 69 6e 74 65 72 63 65 70 | 74 20 6f 63 63 75 72 73 |intercep|t occurs|
|000020b0| 20 61 74 20 28 30 2c 20 | 35 29 2e 0d 0a 00 0d 0b | at (0, |5)......|
|000020c0| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|000020d0| 20 20 20 20 20 20 20 20 | 20 11 33 79 20 11 31 3d | | .3y .1=|
|000020e0| 20 35 20 2d 20 32 28 30 | 29 20 3d 20 35 13 0d 0a | 5 - 2(0|) = 5...|
|000020f0| 00 0d 0b 00 4c 65 74 74 | 69 6e 67 20 11 33 79 20 |....Lett|ing .3y |
|00002100| 11 31 3d 20 30 2c 20 77 | 65 20 73 65 65 20 74 68 |.1= 0, w|e see th|
|00002110| 61 74 20 74 68 65 20 11 | 33 78 11 31 2d 69 6e 74 |at the .|3x.1-int|
|00002120| 65 72 63 65 70 74 20 6f | 63 63 75 72 73 20 61 74 |ercept o|ccurs at|
|00002130| 20 28 35 2f 32 2c 20 30 | 29 2e 0d 0a 00 0d 0b 00 | (5/2, 0|).......|
|00002140| 20 20 20 20 20 20 20 20 | 20 20 20 30 20 3d 20 35 | | 0 = 5|
|00002150| 20 2d 20 32 11 33 78 20 | 20 20 20 11 34 35 35 36 | - 2.3x | .4556|
|00002160| 20 20 20 20 11 31 32 11 | 33 78 20 11 31 3d 20 35 | .12.|3x .1= 5|
|00002170| 20 20 20 20 11 34 35 35 | 36 20 20 20 20 11 33 78 | .455|6 .3x|
|00002180| 20 11 31 3d 20 35 2f 32 | 13 0d 0a 00 0d 0b 00 57 | .1= 5/2|.......W|
|00002190| 68 65 6e 20 77 65 20 74 | 65 73 74 20 66 6f 72 20 |hen we t|est for |
|000021a0| 73 79 6d 6d 65 74 72 79 | 2c 20 77 65 20 66 69 6e |symmetry|, we fin|
|000021b0| 64 20 74 68 61 74 20 61 | 6c 6c 20 74 68 72 65 65 |d that a|ll three|
|000021c0| 20 74 65 73 74 73 20 66 | 61 69 6c 2e 20 20 54 68 | tests f|ail. Th|
|000021d0| 65 72 65 66 6f 72 65 2c | 20 77 65 0d 0a 00 63 6f |erefore,| we...co|
|000021e0| 6e 63 6c 75 64 65 20 74 | 68 61 74 20 74 68 65 20 |nclude t|hat the |
|000021f0| 67 72 61 70 68 20 64 6f | 65 73 6e 27 74 20 68 61 |graph do|esn't ha|
|00002200| 76 65 20 11 33 78 11 31 | 2d 61 78 69 73 2c 20 11 |ve .3x.1|-axis, .|
|00002210| 33 79 11 31 2d 61 78 69 | 73 2c 20 6f 72 20 6f 72 |3y.1-axi|s, or or|
|00002220| 69 67 69 6e 20 73 79 6d | 6d 65 74 72 79 2e 13 0d |igin sym|metry...|
|00002230| 0a 00 0d 0b 00 46 69 6e | 61 6c 6c 79 2c 20 75 73 |.....Fin|ally, us|
|00002240| 69 6e 67 20 61 20 74 61 | 62 6c 65 20 6f 66 20 76 |ing a ta|ble of v|
|00002250| 61 6c 75 65 73 20 61 6e | 64 20 74 68 65 20 74 77 |alues an|d the tw|
|00002260| 6f 20 69 6e 74 65 72 63 | 65 70 74 73 2c 20 77 65 |o interc|epts, we|
|00002270| 20 6f 62 74 61 69 6e 20 | 74 68 65 20 67 72 61 70 | obtain |the grap|
|00002280| 68 0d 0a 00 73 68 6f 77 | 6e 20 6f 6e 20 74 68 65 |h...show|n on the|
|00002290| 20 6e 65 78 74 20 70 61 | 67 65 2e 0d 0a 00 0d 0a | next pa|ge......|
|000022a0| 00 0d 0a 00 0d 0a 00 0d | 0a 00 20 20 20 20 20 20 |........|.. |
|000022b0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000022c0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000022d0| 20 20 20 20 0d 0b 00 20 | 20 20 20 20 11 34 5b 32 | ... | .4[2|
|000022e0| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |22222222|22222222|
|000022f0| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 5d 0d 0b |22222222|22222]..|
|00002300| 00 20 20 20 20 20 21 20 | 11 33 78 20 20 20 20 20 |. ! |.3x |
|00002310| 20 20 20 20 20 11 34 21 | 20 11 31 2d 32 20 11 34 | .4!| .1-2 .4|
|00002320| 21 20 11 31 2d 31 20 11 | 34 21 20 11 31 31 20 11 |! .1-1 .|4! .11 .|
|00002330| 34 21 20 11 31 32 20 11 | 34 21 0d 0b 00 20 20 20 |4! .12 .|4!... |
|00002340| 20 20 21 32 32 32 32 32 | 32 32 32 32 32 32 32 32 | !22222|22222222|
|00002350| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |22222222|22222222|
|00002360| 32 21 0d 0b 00 20 20 20 | 20 20 21 20 11 33 79 20 |2!... | ! .3y |
|00002370| 11 31 3d 20 35 20 2d 20 | 32 11 33 78 20 11 34 21 |.1= 5 - |2.3x .4!|
|00002380| 20 20 11 31 39 20 11 34 | 21 20 20 11 31 37 20 11 | .19 .4|! .17 .|
|00002390| 34 21 20 11 31 33 20 11 | 34 21 20 11 31 31 20 11 |4! .13 .|4! .11 .|
|000023a0| 34 21 20 0d 0b 00 20 20 | 20 20 20 6c 32 32 32 32 |4! ... | l2222|
|000023b0| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |22222222|22222222|
|000023c0| 32 32 32 32 32 32 32 32 | 32 32 6a 0d 0a 00 20 20 |22222222|22j... |
|000023d0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000023e0| 20 20 20 20 20 11 31 14 | 6b 33 2d 32 2d 34 2e 6d | .1.|k3-2-4.m|
|000023f0| 14 34 35 14 32 14 35 30 | 14 38 14 0d 0a 00 53 65 |.45.2.50|.8....Se|
|00002400| 63 74 69 6f 6e 20 31 2e | 31 20 20 47 72 61 70 68 |ction 1.|1 Graph|
|00002410| 73 20 61 6e 64 20 47 72 | 61 70 68 69 6e 67 20 55 |s and Gr|aphing U|
|00002420| 74 69 6c 69 74 69 65 73 | 0d 0b 00 20 20 20 20 20 |tilities|... |
|00002430| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002440| 20 20 20 20 11 32 32 0d | 0b 00 11 31 53 6b 65 74 | .22.|...1Sket|
|00002450| 63 68 20 74 68 65 20 67 | 72 61 70 68 20 6f 66 20 |ch the g|raph of |
|00002460| 11 33 79 20 11 31 3d 20 | 11 33 78 20 20 11 31 2d |.3y .1= |.3x .1-|
|00002470| 20 11 33 78 20 11 31 2d | 20 36 2e 20 20 49 64 65 | .3x .1-| 6. Ide|
|00002480| 6e 74 69 66 79 20 61 6e | 79 20 69 6e 74 65 72 63 |ntify an|y interc|
|00002490| 65 70 74 73 20 61 6e 64 | 20 74 65 73 74 20 66 6f |epts and| test fo|
|000024a0| 72 20 0d 0a 00 73 79 6d | 6d 65 74 72 79 2e 0d 0a |r ...sym|metry...|
|000024b0| 00 0d 0a 00 13 12 31 53 | 4f 4c 55 54 49 4f 4e 12 |......1S|OLUTION.|
|000024c0| 30 0d 0a 00 0d 0b 00 4c | 65 74 74 69 6e 67 20 11 |0......L|etting .|
|000024d0| 33 78 20 11 31 3d 20 30 | 2c 20 77 65 20 73 65 65 |3x .1= 0|, we see|
|000024e0| 20 74 68 61 74 20 74 68 | 65 20 11 33 79 11 31 2d | that th|e .3y.1-|
|000024f0| 69 6e 74 65 72 63 65 70 | 74 20 6f 63 63 75 72 73 |intercep|t occurs|
|00002500| 20 61 74 20 28 30 2c 20 | 2d 36 29 2e 0d 0a 00 20 | at (0, |-6).... |
|00002510| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002520| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 11 32 | | .2|
|00002530| 32 0d 0b 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |2... | |
|00002540| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 11 33 | | .3|
|00002550| 79 20 11 31 3d 20 30 20 | 20 2d 20 30 20 2d 20 36 |y .1= 0 | - 0 - 6|
|00002560| 20 3d 20 2d 36 13 0d 0a | 00 0d 0b 00 4c 65 74 74 | = -6...|....Lett|
|00002570| 69 6e 67 20 11 33 79 20 | 11 31 3d 20 30 2c 20 77 |ing .3y |.1= 0, w|
|00002580| 65 20 73 65 65 20 74 68 | 61 74 20 74 68 65 20 11 |e see th|at the .|
|00002590| 33 78 11 31 2d 69 6e 74 | 65 72 63 65 70 74 73 20 |3x.1-int|ercepts |
|000025a0| 6f 63 63 75 72 20 61 74 | 20 28 2d 32 2c 20 30 29 |occur at| (-2, 0)|
|000025b0| 20 61 6e 64 20 28 33 2c | 20 30 29 2e 0d 0a 00 20 | and (3,| 0).... |
|000025c0| 20 20 20 20 20 20 20 20 | 20 20 20 11 32 32 0d 0b | | .22..|
|000025d0| 00 20 20 20 20 20 20 20 | 11 31 30 20 3d 20 11 33 |. |.10 = .3|
|000025e0| 78 20 20 11 31 2d 20 11 | 33 78 20 11 31 2d 20 36 |x .1- .|3x .1- 6|
|000025f0| 20 20 20 11 34 35 35 36 | 20 20 20 11 31 30 20 3d | .4556| .10 =|
|00002600| 20 28 11 33 78 20 11 31 | 2b 20 32 29 28 11 33 78 | (.3x .1|+ 2)(.3x|
|00002610| 20 11 31 2d 20 33 29 20 | 20 20 11 34 35 35 36 20 | .1- 3) | .4556 |
|00002620| 20 20 11 33 78 20 11 31 | 3d 20 2d 32 2c 20 33 13 | .3x .1|= -2, 3.|
|00002630| 0d 0a 00 0d 0b 00 57 68 | 65 6e 20 77 65 20 74 65 |......Wh|en we te|
|00002640| 73 74 20 66 6f 72 20 73 | 79 6d 6d 65 74 72 79 2c |st for s|ymmetry,|
|00002650| 20 77 65 20 66 69 6e 64 | 20 74 68 61 74 20 61 6c | we find| that al|
|00002660| 6c 20 74 68 72 65 65 20 | 74 65 73 74 73 20 66 61 |l three |tests fa|
|00002670| 69 6c 2e 20 20 54 68 65 | 72 65 66 6f 72 65 2c 20 |il. The|refore, |
|00002680| 77 65 0d 0a 00 63 6f 6e | 63 6c 75 64 65 20 74 68 |we...con|clude th|
|00002690| 61 74 20 74 68 65 20 67 | 72 61 70 68 20 64 6f 65 |at the g|raph doe|
|000026a0| 73 6e 27 74 20 68 61 76 | 65 20 11 33 78 11 31 2d |sn't hav|e .3x.1-|
|000026b0| 61 78 69 73 2c 20 11 33 | 79 11 31 2d 61 78 69 73 |axis, .3|y.1-axis|
|000026c0| 2c 20 6f 72 20 6f 72 69 | 67 69 6e 20 73 79 6d 6d |, or ori|gin symm|
|000026d0| 65 74 72 79 2e 13 0d 0a | 00 0d 0b 00 46 69 6e 61 |etry....|....Fina|
|000026e0| 6c 6c 79 2c 20 75 73 69 | 6e 67 20 61 20 74 61 62 |lly, usi|ng a tab|
|000026f0| 6c 65 20 6f 66 20 76 61 | 6c 75 65 73 20 61 6e 64 |le of va|lues and|
|00002700| 20 74 68 65 20 74 68 72 | 65 65 20 69 6e 74 65 72 | the thr|ee inter|
|00002710| 63 65 70 74 73 2c 20 77 | 65 20 6f 62 74 61 69 6e |cepts, w|e obtain|
|00002720| 20 74 68 65 0d 0a 00 67 | 72 61 70 68 20 73 68 6f | the...g|raph sho|
|00002730| 77 6e 20 6f 6e 20 74 68 | 65 20 6e 65 78 74 20 70 |wn on th|e next p|
|00002740| 61 67 65 2e 0d 0a 00 0d | 0a 00 0d 0a 00 0d 0a 00 |age.....|........|
|00002750| 0d 0a 00 0d 0b 00 20 11 | 34 5b 32 32 32 32 32 32 |...... .|4[222222|
|00002760| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |22222222|22222222|
|00002770| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 5d 0d |22222222|222222].|
|00002780| 0b 00 20 21 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. ! | |
|00002790| 20 20 20 20 21 20 20 20 | 20 21 20 20 20 20 21 20 | ! | ! ! |
|000027a0| 20 20 20 21 20 20 20 20 | 21 0d 0b 00 20 21 20 11 | ! |!... ! .|
|000027b0| 33 78 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |3x | |
|000027c0| 11 34 21 20 11 31 2d 33 | 20 11 34 21 20 11 31 2d |.4! .1-3| .4! .1-|
|000027d0| 31 20 11 34 21 20 20 11 | 31 31 20 11 34 21 20 20 |1 .4! .|11 .4! |
|000027e0| 11 31 32 20 11 34 21 0d | 0b 00 20 21 32 32 32 32 |.12 .4!.|.. !2222|
|000027f0| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |22222222|22222222|
|00002800| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |22222222|22222222|
|00002810| 21 0d 0b 00 20 21 20 20 | 20 20 20 20 11 32 32 20 |!... ! | .22 |
|00002820| 20 20 20 20 20 20 20 20 | 11 34 21 20 20 20 20 21 | |.4! !|
|00002830| 20 20 20 20 21 20 20 20 | 20 21 20 20 20 20 21 0d | ! | ! !.|
|00002840| 0b 00 20 21 20 11 33 79 | 20 11 31 3d 20 11 33 78 |.. ! .3y| .1= .3x|
|00002850| 20 20 11 31 2d 20 11 33 | 78 20 11 31 2d 20 36 20 | .1- .3|x .1- 6 |
|00002860| 11 34 21 20 20 11 31 36 | 20 11 34 21 20 11 31 2d |.4! .16| .4! .1-|
|00002870| 34 20 11 34 21 20 11 31 | 2d 36 20 11 34 21 20 11 |4 .4! .1|-6 .4! .|
|00002880| 31 2d 34 20 11 34 21 20 | 20 20 20 0d 0b 00 20 6c |1-4 .4! | ... l|
|00002890| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |22222222|22222222|
|000028a0| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |22222222|22222222|
|000028b0| 32 32 32 32 6a 0d 0a 00 | 20 20 20 20 20 20 20 20 |2222j...| |
|000028c0| 20 20 20 20 20 20 20 11 | 31 14 76 6b 33 2d 32 2d | .|1.vk3-2-|
|000028d0| 35 61 2e 6d 14 34 36 14 | 32 14 35 30 14 38 14 14 |5a.m.46.|2.50.8..|
|000028e0| 76 6b 33 2d 32 2d 35 62 | 2e 6d 14 34 36 14 32 14 |vk3-2-5b|.m.46.2.|
|000028f0| 35 30 14 38 14 14 76 6b | 33 2d 32 2d 35 63 2e 6d |50.8..vk|3-2-5c.m|
|00002900| 14 34 36 14 32 14 35 30 | 14 38 14 14 76 6b 33 2d |.46.2.50|.8..vk3-|
|00002910| 32 2d 35 64 2e 6d 14 34 | 36 14 32 14 35 30 14 38 |2-5d.m.4|6.2.50.8|
|00002920| 14 14 76 6b 33 2d 32 2d | 35 65 2e 6d 14 34 36 14 |..vk3-2-|5e.m.46.|
|00002930| 32 14 35 30 14 38 14 0d | 0b 00 14 76 6b 33 2d 32 |2.50.8..|...vk3-2|
|00002940| 2d 35 66 2e 6d 14 34 36 | 14 32 14 35 30 14 38 14 |-5f.m.46|.2.50.8.|
|00002950| 14 76 6b 33 2d 32 2d 35 | 67 2e 6d 14 34 36 14 32 |.vk3-2-5|g.m.46.2|
|00002960| 14 35 30 14 38 14 14 76 | 6b 33 2d 32 2d 35 68 2e |.50.8..v|k3-2-5h.|
|00002970| 6d 14 34 36 14 32 14 35 | 30 14 38 14 14 76 6b 33 |m.46.2.5|0.8..vk3|
|00002980| 2d 32 2d 35 69 2e 6d 14 | 34 36 14 32 14 35 30 14 |-2-5i.m.|46.2.50.|
|00002990| 38 14 0d 0a 00 53 65 63 | 74 69 6f 6e 20 31 2e 31 |8....Sec|tion 1.1|
|000029a0| 20 20 47 72 61 70 68 73 | 20 61 6e 64 20 47 72 61 | Graphs| and Gra|
|000029b0| 70 68 69 6e 67 20 55 74 | 69 6c 69 74 69 65 73 0d |phing Ut|ilities.|
|000029c0| 0b 00 53 6b 65 74 63 68 | 20 74 68 65 20 67 72 61 |..Sketch| the gra|
|000029d0| 70 68 20 6f 66 20 11 33 | 79 20 11 31 3d 20 7c 11 |ph of .3|y .1= |.|
|000029e0| 33 78 11 31 7c 20 2b 20 | 32 2e 20 20 49 64 65 6e |3x.1| + |2. Iden|
|000029f0| 74 69 66 79 20 61 6e 79 | 20 69 6e 74 65 72 63 65 |tify any| interce|
|00002a00| 70 74 73 20 61 6e 64 20 | 74 65 73 74 20 66 6f 72 |pts and |test for|
|00002a10| 20 0d 0a 00 73 79 6d 6d | 65 74 72 79 2e 0d 0a 00 | ...symm|etry....|
|00002a20| 0d 0b 00 13 12 31 53 4f | 4c 55 54 49 4f 4e 12 30 |.....1SO|LUTION.0|
|00002a30| 0d 0a 00 0d 0b 00 4c 65 | 74 74 69 6e 67 20 11 33 |......Le|tting .3|
|00002a40| 78 20 11 31 3d 20 30 2c | 20 77 65 20 73 65 65 20 |x .1= 0,| we see |
|00002a50| 74 68 61 74 20 74 68 65 | 20 11 33 79 11 31 2d 69 |that the| .3y.1-i|
|00002a60| 6e 74 65 72 63 65 70 74 | 20 6f 63 63 75 72 73 20 |ntercept| occurs |
|00002a70| 61 74 20 28 30 2c 20 32 | 29 2e 0d 0a 00 0d 0b 00 |at (0, 2|).......|
|00002a80| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002a90| 20 20 20 20 20 20 20 11 | 33 79 20 11 31 3d 20 7c | .|3y .1= ||
|00002aa0| 30 7c 20 2b 20 32 20 3d | 20 32 13 0d 0a 00 0d 0b |0| + 2 =| 2......|
|00002ab0| 00 4c 65 74 74 69 6e 67 | 20 11 33 79 20 11 31 3d |.Letting| .3y .1=|
|00002ac0| 20 30 2c 20 77 65 20 73 | 65 65 20 74 68 61 74 20 | 0, we s|ee that |
|00002ad0| 30 20 3d 20 7c 11 33 78 | 11 31 7c 20 2b 20 32 20 |0 = |.3x|.1| + 2 |
|00002ae0| 68 61 73 20 6e 6f 20 72 | 65 61 6c 20 73 6f 6c 75 |has no r|eal solu|
|00002af0| 74 69 6f 6e 73 2e 20 20 | 54 68 65 72 65 66 6f 72 |tions. |Therefor|
|00002b00| 65 2c 20 0d 0a 00 74 68 | 65 72 65 20 61 72 65 20 |e, ...th|ere are |
|00002b10| 6e 6f 20 11 33 78 11 31 | 2d 69 6e 74 65 72 63 65 |no .3x.1|-interce|
|00002b20| 70 74 73 2e 0d 0a 00 0d | 0b 00 20 20 20 20 20 20 |pts.....|.. |
|00002b30| 20 20 20 20 20 20 20 20 | 20 20 20 30 20 3d 20 7c | | 0 = ||
|00002b40| 11 33 78 11 31 7c 20 2b | 20 32 20 20 20 11 34 35 |.3x.1| +| 2 .45|
|00002b50| 35 36 20 20 20 11 31 2d | 32 20 3d 20 7c 11 33 78 |56 .1-|2 = |.3x|
|00002b60| 11 31 7c 20 20 20 20 20 | 20 12 31 11 32 4e 6f 20 |.1| | .1.2No |
|00002b70| 72 65 61 6c 20 73 6f 6c | 75 74 69 6f 6e 73 11 31 |real sol|utions.1|
|00002b80| 12 30 13 0d 0a 00 0d 0b | 00 4f 66 20 74 68 65 20 |.0......|.Of the |
|00002b90| 74 68 72 65 65 20 74 65 | 73 74 73 20 66 6f 72 20 |three te|sts for |
|00002ba0| 73 79 6d 6d 65 74 72 79 | 2c 20 74 68 65 20 6f 6e |symmetry|, the on|
|00002bb0| 6c 79 20 6f 6e 65 20 74 | 68 61 74 20 69 73 20 73 |ly one t|hat is s|
|00002bc0| 61 74 69 73 66 69 65 64 | 20 62 79 20 74 68 69 73 |atisfied| by this|
|00002bd0| 20 0d 0a 00 65 71 75 61 | 74 69 6f 6e 20 69 73 20 | ...equa|tion is |
|00002be0| 74 68 65 20 74 65 73 74 | 20 66 6f 72 20 11 33 79 |the test| for .3y|
|00002bf0| 11 31 2d 61 78 69 73 20 | 73 79 6d 6d 65 74 72 79 |.1-axis |symmetry|
|00002c00| 2e 0d 0a 00 0d 0b 00 20 | 20 20 20 20 20 20 20 20 |....... | |
|00002c10| 20 20 20 11 33 79 20 11 | 31 3d 20 7c 11 33 78 11 | .3y .|1= |.3x.|
|00002c20| 31 7c 20 2b 20 32 20 20 | 20 20 20 20 20 20 20 20 |1| + 2 | |
|00002c30| 20 20 20 20 20 12 31 11 | 32 47 69 76 65 6e 20 65 | .1.|2Given e|
|00002c40| 71 75 61 74 69 6f 6e 11 | 31 12 30 13 0d 0a 00 0d |quation.|1.0.....|
|00002c50| 0b 00 20 20 20 20 20 20 | 20 20 20 20 20 20 11 33 |.. | .3|
|00002c60| 79 20 11 31 3d 20 7c 2d | 11 33 78 11 31 7c 20 2b |y .1= |-|.3x.1| +|
|00002c70| 20 32 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | 2 | |
|00002c80| 12 31 11 32 52 65 70 6c | 61 63 65 20 78 20 62 79 |.1.2Repl|ace x by|
|00002c90| 20 2d 78 11 31 12 30 13 | 0d 0a 00 0d 0b 00 20 20 | -x.1.0.|...... |
|00002ca0| 20 20 20 20 20 20 20 20 | 20 20 11 33 79 20 11 31 | | .3y .1|
|00002cb0| 3d 20 7c 11 33 78 11 31 | 7c 20 2b 20 32 20 20 20 |= |.3x.1|| + 2 |
|00002cc0| 20 20 20 20 20 20 20 20 | 20 20 20 20 12 31 11 32 | | .1.2|
|00002cd0| 52 65 70 6c 61 63 65 6d | 65 6e 74 20 79 69 65 6c |Replacem|ent yiel|
|00002ce0| 64 73 20 65 71 75 69 76 | 61 6c 65 6e 74 20 65 71 |ds equiv|alent eq|
|00002cf0| 75 61 74 69 6f 6e 11 31 | 12 30 0d 0a 00 0d 0b 00 |uation.1|.0......|
|00002d00| 54 68 75 73 2c 20 74 68 | 65 20 67 72 61 70 68 20 |Thus, th|e graph |
|00002d10| 69 73 20 73 79 6d 6d 65 | 74 72 69 63 20 77 69 74 |is symme|tric wit|
|00002d20| 68 20 72 65 73 70 65 63 | 74 20 74 6f 20 74 68 65 |h respec|t to the|
|00002d30| 20 11 33 79 11 31 2d 61 | 78 69 73 2e 13 0d 0a 00 | .3y.1-a|xis.....|
|00002d40| 0d 0b 00 55 73 69 6e 67 | 20 73 79 6d 6d 65 74 72 |...Using| symmetr|
|00002d50| 79 2c 20 77 65 20 6e 65 | 65 64 20 6f 6e 6c 79 20 |y, we ne|ed only |
|00002d60| 66 69 6e 64 20 73 6f 6c | 75 74 69 6f 6e 20 70 6f |find sol|ution po|
|00002d70| 69 6e 74 73 20 74 6f 20 | 74 68 65 20 72 69 67 68 |ints to |the righ|
|00002d80| 74 20 6f 66 20 74 68 65 | 20 11 33 79 11 31 2d 61 |t of the| .3y.1-a|
|00002d90| 78 69 73 0d 0a 00 61 6e | 64 20 74 68 65 6e 20 72 |xis...an|d then r|
|00002da0| 65 66 6c 65 63 74 20 74 | 68 65 6d 20 74 6f 20 6f |eflect t|hem to o|
|00002db0| 62 74 61 69 6e 20 74 68 | 65 20 64 65 73 69 72 65 |btain th|e desire|
|00002dc0| 64 20 67 72 61 70 68 20 | 61 73 20 73 68 6f 77 6e |d graph |as shown|
|00002dd0| 20 62 65 6c 6f 77 2e 0d | 0a 00 0d 0a 00 0d 0a 00 | below..|........|
|00002de0| 20 20 11 34 5b 32 32 32 | 32 32 32 32 32 32 32 32 | .4[222|22222222|
|00002df0| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |22222222|22222222|
|00002e00| 32 32 5d 0d 0b 00 20 20 | 21 20 20 20 20 20 20 20 |22]... |! |
|00002e10| 20 20 20 20 20 20 21 20 | 20 20 21 20 20 20 21 20 | ! | ! ! |
|00002e20| 20 20 21 20 20 20 21 0d | 0b 00 20 20 21 20 11 33 | ! !.|.. ! .3|
|00002e30| 78 20 20 20 20 20 20 20 | 20 20 20 20 11 34 21 20 |x | .4! |
|00002e40| 11 31 31 20 11 34 21 20 | 11 31 32 20 11 34 21 20 |.11 .4! |.12 .4! |
|00002e50| 11 31 33 20 11 34 21 20 | 11 31 34 20 11 34 21 0d |.13 .4! |.14 .4!.|
|00002e60| 0b 00 20 20 21 32 32 32 | 32 32 32 32 32 32 32 32 |.. !222|22222222|
|00002e70| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |22222222|22222222|
|00002e80| 32 32 21 0d 0b 00 20 20 | 21 20 20 20 20 20 20 20 |22!... |! |
|00002e90| 20 20 20 20 20 20 21 20 | 20 20 21 20 20 20 21 20 | ! | ! ! |
|00002ea0| 20 20 21 20 20 20 21 0d | 0b 00 20 20 21 20 11 33 | ! !.|.. ! .3|
|00002eb0| 79 20 11 31 3d 20 7c 11 | 33 78 11 31 7c 20 2b 20 |y .1= |.|3x.1| + |
|00002ec0| 32 20 11 34 21 20 11 31 | 33 20 11 34 21 20 11 31 |2 .4! .1|3 .4! .1|
|00002ed0| 34 20 11 34 21 20 11 31 | 35 20 11 34 21 20 11 31 |4 .4! .1|5 .4! .1|
|00002ee0| 36 20 11 34 21 0d 0b 00 | 20 20 6c 32 32 32 32 32 |6 .4!...| l22222|
|00002ef0| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |22222222|22222222|
|00002f00| 32 32 32 32 32 32 32 32 | 6a 20 20 20 20 20 20 20 |22222222|j |
|00002f10| 20 20 20 20 20 20 20 11 | 31 14 76 6b 33 2d 32 2d | .|1.vk3-2-|
|00002f20| 36 61 2e 6d 14 34 35 14 | 31 30 14 35 30 14 38 14 |6a.m.45.|10.50.8.|
|00002f30| 14 76 6b 33 2d 32 2d 36 | 62 2e 6d 14 34 35 14 31 |.vk3-2-6|b.m.45.1|
|00002f40| 30 14 35 30 14 38 14 14 | 76 6b 33 2d 32 2d 36 63 |0.50.8..|vk3-2-6c|
|00002f50| 2e 6d 14 34 35 14 31 30 | 14 35 30 14 38 14 0d 0b |.m.45.10|.50.8...|
|00002f60| 00 14 76 6b 33 2d 32 2d | 36 64 2e 6d 14 34 35 14 |..vk3-2-|6d.m.45.|
|00002f70| 31 30 14 35 30 14 38 14 | 14 76 6b 33 2d 32 2d 36 |10.50.8.|.vk3-2-6|
|00002f80| 65 2e 6d 14 34 35 14 31 | 30 14 35 30 14 38 14 14 |e.m.45.1|0.50.8..|
|00002f90| 76 6b 33 2d 32 2d 36 66 | 2e 6d 14 34 35 14 31 30 |vk3-2-6f|.m.45.10|
|00002fa0| 14 35 30 14 38 14 14 76 | 6b 33 2d 32 2d 36 67 2e |.50.8..v|k3-2-6g.|
|00002fb0| 6d 14 34 35 14 31 30 14 | 35 30 14 38 14 14 76 6b |m.45.10.|50.8..vk|
|00002fc0| 33 2d 32 2d 36 68 2e 6d | 14 34 35 14 31 30 14 35 |3-2-6h.m|.45.10.5|
|00002fd0| 30 14 38 14 0d 0b 00 14 | 76 6b 33 2d 32 2d 36 69 |0.8.....|vk3-2-6i|
|00002fe0| 2e 6d 14 34 35 14 31 30 | 14 35 30 14 38 14 14 76 |.m.45.10|.50.8..v|
|00002ff0| 6b 33 2d 32 2d 36 6a 2e | 6d 14 34 35 14 31 30 14 |k3-2-6j.|m.45.10.|
|00003000| 35 30 14 38 14 14 76 6b | 33 2d 32 2d 36 6b 2e 6d |50.8..vk|3-2-6k.m|
|00003010| 14 34 35 14 31 30 14 35 | 30 14 38 14 0d 0b 00 20 |.45.10.5|0.8.... |
|00003020| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00003030| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00003040| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00003050| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00003060| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00003070| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00003080| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00003090| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000030a0| 20 20 20 2e 0d 0a 00 53 | 65 63 74 69 6f 6e 20 31 | ....S|ection 1|
|000030b0| 2e 31 20 20 47 72 61 70 | 68 73 20 61 6e 64 20 47 |.1 Grap|hs and G|
|000030c0| 72 61 70 68 69 6e 67 20 | 55 74 69 6c 69 74 69 65 |raphing |Utilitie|
|000030d0| 73 0d 0b 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |s... | |
|000030e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000030f0| 20 11 32 32 0d 0b 00 11 | 31 53 6b 65 74 63 68 20 | .22....|1Sketch |
|00003100| 74 68 65 20 67 72 61 70 | 68 20 6f 66 20 11 33 78 |the grap|h of .3x|
|00003110| 20 11 31 3d 20 31 20 2d | 20 11 33 79 20 11 31 2e | .1= 1 -| .3y .1.|
|00003120| 20 20 49 64 65 6e 74 69 | 66 79 20 61 6e 79 20 69 | Identi|fy any i|
|00003130| 6e 74 65 72 63 65 70 74 | 73 20 61 6e 64 20 74 65 |ntercept|s and te|
|00003140| 73 74 20 66 6f 72 20 0d | 0a 00 73 79 6d 6d 65 74 |st for .|..symmet|
|00003150| 72 79 2e 0d 0a 00 0d 0b | 00 13 12 31 53 4f 4c 55 |ry......|...1SOLU|
|00003160| 54 49 4f 4e 12 30 0d 0a | 00 0d 0b 00 4c 65 74 74 |TION.0..|....Lett|
|00003170| 69 6e 67 20 11 33 78 20 | 11 31 3d 20 30 2c 20 77 |ing .3x |.1= 0, w|
|00003180| 65 20 73 65 65 20 74 68 | 61 74 20 74 68 65 20 11 |e see th|at the .|
|00003190| 33 79 11 31 2d 69 6e 74 | 65 72 63 65 70 74 73 20 |3y.1-int|ercepts |
|000031a0| 6f 63 63 75 72 20 61 74 | 20 28 30 2c 20 31 29 20 |occur at| (0, 1) |
|000031b0| 61 6e 64 20 28 30 2c 20 | 2d 31 29 2e 0d 0a 00 20 |and (0, |-1).... |
|000031c0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000031d0| 20 20 20 20 20 11 32 32 | 20 20 20 20 20 20 20 20 | .22| |
|000031e0| 20 20 20 20 32 0d 0b 00 | 20 20 20 20 20 20 20 20 | 2...| |
|000031f0| 20 20 20 20 20 11 31 30 | 20 3d 20 31 20 2d 20 11 | .10| = 1 - .|
|00003200| 33 79 20 20 20 20 20 11 | 34 35 35 36 20 20 20 20 |3y .|4556 |
|00003210| 11 33 79 20 20 11 31 3d | 20 31 20 20 20 20 11 34 |.3y .1=| 1 .4|
|00003220| 35 35 36 20 20 20 20 11 | 33 79 20 11 31 3d 20 11 |556 .|3y .1= .|
|00003230| 34 2b 11 31 31 13 0d 0a | 00 0d 0b 00 4c 65 74 74 |4+.11...|....Lett|
|00003240| 69 6e 67 20 11 33 79 20 | 11 31 3d 20 30 2c 20 77 |ing .3y |.1= 0, w|
|00003250| 65 20 73 65 65 20 74 68 | 61 74 20 74 68 65 20 11 |e see th|at the .|
|00003260| 33 78 11 31 2d 69 6e 74 | 65 72 63 65 70 74 20 6f |3x.1-int|ercept o|
|00003270| 63 63 75 72 73 20 61 74 | 20 28 31 2c 20 30 29 2e |ccurs at| (1, 0).|
|00003280| 0d 0a 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|00003290| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000032a0| 20 20 20 20 20 11 32 32 | 0d 0b 00 20 20 20 20 20 | .22|... |
|000032b0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000032c0| 20 20 20 20 11 33 78 20 | 11 31 3d 20 31 20 2d 20 | .3x |.1= 1 - |
|000032d0| 30 20 20 3d 20 31 13 0d | 0a 00 0d 0b 00 4f 66 20 |0 = 1..|.....Of |
|000032e0| 74 68 65 20 74 68 72 65 | 65 20 74 65 73 74 73 20 |the thre|e tests |
|000032f0| 66 6f 72 20 73 79 6d 6d | 65 74 72 79 2c 20 74 68 |for symm|etry, th|
|00003300| 65 20 6f 6e 6c 79 20 6f | 6e 65 20 74 68 61 74 20 |e only o|ne that |
|00003310| 69 73 20 73 61 74 69 73 | 66 69 65 64 20 62 79 20 |is satis|fied by |
|00003320| 74 68 69 73 20 0d 0a 00 | 65 71 75 61 74 69 6f 6e |this ...|equation|
|00003330| 20 69 73 20 74 68 65 20 | 74 65 73 74 20 66 6f 72 | is the |test for|
|00003340| 20 11 33 78 11 31 2d 61 | 78 69 73 20 73 79 6d 6d | .3x.1-a|xis symm|
|00003350| 65 74 72 79 2e 0d 0a 00 | 20 20 20 20 20 20 20 20 |etry....| |
|00003360| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 11 32 32 | | .22|
|00003370| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 20 20 20 11 |... | .|
|00003380| 33 78 20 11 31 3d 20 31 | 20 2d 20 11 33 79 20 20 |3x .1= 1| - .3y |
|00003390| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000033a0| 11 31 12 31 11 32 47 69 | 76 65 6e 20 65 71 75 61 |.1.1.2Gi|ven equa|
|000033b0| 74 69 6f 6e 11 31 12 30 | 13 0d 0a 00 20 20 20 20 |tion.1.0|.... |
|000033c0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000033d0| 20 20 20 20 11 32 32 0d | 0b 00 20 20 20 20 20 20 | .22.|.. |
|000033e0| 20 20 20 20 20 20 11 33 | 78 20 11 31 3d 20 31 20 | .3|x .1= 1 |
|000033f0| 2d 20 28 2d 11 33 79 11 | 31 29 20 20 20 20 20 20 |- (-.3y.|1) |
|00003400| 20 20 20 20 20 20 20 20 | 20 12 31 11 32 52 65 70 | | .1.2Rep|
|00003410| 6c 61 63 65 20 79 20 77 | 69 74 68 20 2d 79 11 31 |lace y w|ith -y.1|
|00003420| 12 30 13 0d 0a 00 20 20 | 20 20 20 20 20 20 20 20 |.0.... | |
|00003430| 20 20 20 20 20 20 20 20 | 20 20 20 11 32 32 0d 0b | | .22..|
|00003440| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 11 33 78 |. | .3x|
|00003450| 20 11 31 3d 20 31 20 2d | 20 11 33 79 20 20 20 20 | .1= 1 -| .3y |
|00003460| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 11 31 | | .1|
|00003470| 12 31 11 32 52 65 70 6c | 61 63 65 6d 65 6e 74 20 |.1.2Repl|acement |
|00003480| 79 69 65 6c 64 73 20 65 | 71 75 69 76 61 6c 65 6e |yields e|quivalen|
|00003490| 74 20 65 71 75 61 74 69 | 6f 6e 11 31 12 30 0d 0a |t equati|on.1.0..|
|000034a0| 00 0d 0b 00 54 68 75 73 | 2c 20 74 68 65 20 67 72 |....Thus|, the gr|
|000034b0| 61 70 68 20 69 73 20 73 | 79 6d 6d 65 74 72 69 63 |aph is s|ymmetric|
|000034c0| 20 77 69 74 68 20 72 65 | 73 70 65 63 74 20 74 6f | with re|spect to|
|000034d0| 20 74 68 65 20 11 33 78 | 11 31 2d 61 78 69 73 2e | the .3x|.1-axis.|
|000034e0| 13 0d 0a 00 0d 0b 00 55 | 73 69 6e 67 20 73 79 6d |.......U|sing sym|
|000034f0| 6d 65 74 72 79 2c 20 77 | 65 20 6e 65 65 64 20 6f |metry, w|e need o|
|00003500| 6e 6c 79 20 66 69 6e 64 | 20 73 6f 6c 75 74 69 6f |nly find| solutio|
|00003510| 6e 20 70 6f 69 6e 74 73 | 20 61 62 6f 76 65 20 74 |n points| above t|
|00003520| 68 65 20 11 33 78 11 31 | 2d 61 78 69 73 20 61 6e |he .3x.1|-axis an|
|00003530| 64 20 74 68 65 6e 20 0d | 0a 00 72 65 66 6c 65 63 |d then .|..reflec|
|00003540| 74 20 74 68 65 6d 20 74 | 6f 20 6f 62 74 61 69 6e |t them t|o obtain|
|00003550| 20 74 68 65 20 64 65 73 | 69 72 65 64 20 67 72 61 | the des|ired gra|
|00003560| 70 68 20 61 73 20 73 68 | 6f 77 6e 20 62 65 6c 6f |ph as sh|own belo|
|00003570| 77 2e 0d 0a 00 0d 0a 00 | 0d 0a 00 0d 0b 00 20 20 |w.......|...... |
|00003580| 11 34 5b 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |.4[22222|22222222|
|00003590| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |22222222|22222222|
|000035a0| 5d 0d 0b 00 20 20 21 20 | 20 20 20 20 20 20 20 20 |]... ! | |
|000035b0| 20 11 32 32 20 20 11 34 | 21 20 20 20 20 20 21 20 | .22 .4|! ! |
|000035c0| 20 20 20 21 20 20 20 20 | 21 0d 0b 00 20 20 21 20 | ! |!... ! |
|000035d0| 11 33 78 20 11 31 3d 20 | 31 20 2d 20 11 33 79 20 |.3x .1= |1 - .3y |
|000035e0| 20 20 11 34 21 20 11 31 | 2d 31 35 20 11 34 21 20 | .4! .1|-15 .4! |
|000035f0| 11 31 2d 38 20 11 34 21 | 20 11 31 2d 33 20 11 34 |.1-8 .4!| .1-3 .4|
|00003600| 21 0d 0b 00 20 20 21 32 | 32 32 32 32 32 32 32 32 |!... !2|22222222|
|00003610| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |22222222|22222222|
|00003620| 32 32 32 32 21 0d 0b 00 | 20 20 21 20 20 20 20 20 |2222!...| ! |
|00003630| 20 20 20 20 20 20 20 20 | 21 20 20 20 20 20 21 20 | |! ! |
|00003640| 20 20 20 21 20 20 20 20 | 21 0d 0b 00 20 20 21 20 | ! |!... ! |
|00003650| 11 33 79 20 20 20 20 20 | 20 20 20 20 20 20 11 34 |.3y | .4|
|00003660| 21 20 20 20 11 31 34 20 | 11 34 21 20 20 11 31 33 |! .14 |.4! .13|
|00003670| 20 11 34 21 20 20 11 31 | 32 20 11 34 21 0d 0b 00 | .4! .1|2 .4!...|
|00003680| 20 20 6c 32 32 32 32 32 | 32 32 32 32 32 32 32 32 | l22222|22222222|
|00003690| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |22222222|22222222|
|000036a0| 6a 20 20 20 20 20 20 20 | 20 20 11 31 14 76 6b 33 |j | .1.vk3|
|000036b0| 2d 32 2d 37 61 2e 6d 14 | 34 35 14 31 30 14 35 30 |-2-7a.m.|45.10.50|
|000036c0| 14 38 14 14 76 6b 33 2d | 32 2d 37 62 2e 6d 14 34 |.8..vk3-|2-7b.m.4|
|000036d0| 35 14 31 30 14 35 30 14 | 38 14 14 76 6b 33 2d 32 |5.10.50.|8..vk3-2|
|000036e0| 2d 37 63 2e 6d 14 34 35 | 14 31 30 14 35 30 14 38 |-7c.m.45|.10.50.8|
|000036f0| 14 0d 0b 00 14 76 6b 33 | 2d 32 2d 37 64 2e 6d 14 |.....vk3|-2-7d.m.|
|00003700| 34 35 14 31 30 14 35 30 | 14 38 14 14 76 6b 33 2d |45.10.50|.8..vk3-|
|00003710| 32 2d 37 65 2e 6d 14 34 | 35 14 31 30 14 35 30 14 |2-7e.m.4|5.10.50.|
|00003720| 38 14 14 76 6b 33 2d 32 | 2d 37 66 2e 6d 14 34 35 |8..vk3-2|-7f.m.45|
|00003730| 14 31 30 14 35 30 14 38 | 14 14 76 6b 33 2d 32 2d |.10.50.8|..vk3-2-|
|00003740| 37 67 2e 6d 14 34 35 14 | 31 30 14 35 30 14 38 14 |7g.m.45.|10.50.8.|
|00003750| 0d 0b 00 14 76 6b 33 2d | 32 2d 37 68 2e 6d 14 34 |....vk3-|2-7h.m.4|
|00003760| 35 14 31 30 14 35 30 14 | 38 14 14 76 6b 33 2d 32 |5.10.50.|8..vk3-2|
|00003770| 2d 37 69 2e 6d 14 34 35 | 14 31 30 14 35 30 14 38 |-7i.m.45|.10.50.8|
|00003780| 14 14 76 6b 33 2d 32 2d | 37 6a 2e 6d 14 34 35 14 |..vk3-2-|7j.m.45.|
|00003790| 31 30 14 35 30 14 38 14 | 14 76 6b 33 2d 32 2d 37 |10.50.8.|.vk3-2-7|
|000037a0| 6b 2e 6d 14 34 35 14 31 | 30 14 35 30 14 38 14 0d |k.m.45.1|0.50.8..|
|000037b0| 0b 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|000037c0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000037d0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000037e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000037f0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00003800| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00003810| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00003820| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00003830| 20 2e 0d 0a 00 3a 00 00 | 00 94 02 00 00 4d 2a 00 | ....:..|.....M*.|
|00003840| 00 10 00 00 00 00 00 00 | 00 65 31 2d 31 00 f8 02 |........|.e1-1...|
|00003850| 00 00 c2 05 00 00 4d 2a | 00 00 ce 02 00 00 00 00 |......M*|........|
|00003860| 00 00 65 31 2d 31 2d 31 | 00 e4 08 00 00 12 05 00 |..e1-1-1|........|
|00003870| 00 4d 2a 00 00 ba 08 00 | 00 00 00 00 00 65 31 2d |.M*.....|.....e1-|
|00003880| 31 2d 32 00 20 0e 00 00 | 28 0a 00 00 4d 2a 00 00 |1-2. ...|(...M*..|
|00003890| f6 0d 00 00 00 00 00 00 | 65 31 2d 31 2d 33 00 72 |........|e1-1-3.r|
|000038a0| 18 00 00 68 02 00 00 4d | 2a 00 00 48 18 00 00 00 |...h...M|*..H....|
|000038b0| 00 00 00 65 31 2d 31 2d | 34 00 04 1b 00 00 d4 04 |...e1-1-|4.......|
|000038c0| 00 00 4d 2a 00 00 da 1a | 00 00 00 00 00 00 65 31 |..M*....|......e1|
|000038d0| 2d 31 2d 35 00 02 20 00 | 00 fc 03 00 00 4d 2a 00 |-1-5.. .|.....M*.|
|000038e0| 00 d8 1f 00 00 00 00 00 | 00 69 31 2d 31 2d 31 00 |........|.i1-1-1.|
|000038f0| 28 24 00 00 6d 05 00 00 | 4d 2a 00 00 fe 23 00 00 |($..m...|M*...#..|
|00003900| 00 00 00 00 69 31 2d 31 | 2d 32 00 bf 29 00 00 e8 |....i1-1|-2..)...|
|00003910| 06 00 00 4d 2a 00 00 95 | 29 00 00 00 00 00 00 69 |...M*...|)......i|
|00003920| 31 2d 31 2d 33 00 d1 30 | 00 00 64 07 00 00 4d 2a |1-1-3..0|..d...M*|
|00003930| 00 00 a7 30 00 00 00 00 | 00 00 69 31 2d 31 2d 34 |...0....|..i1-1-4|
|00003940| 00 | |. | |
+--------+-------------------------+-------------------------+--------+--------+